alpaca-lora
alpaca-lora copied to clipboard
All adapter_model.bin is the same
I have noticed that when I fine-tune my model with different epochs, the resulting model parameters are consistently the same, and the file size remains at 443 bytes. Is this expected behavior, or am I missing something in the fine-tuning process?
Hello, I also encountered the same problem, have you solved it?
Same here, I followed the documentation and ran (3 epochs):
python finetune.py \
--base_model 'decapoda-research/llama-7b-hf' \
--data_path 'yahma/alpaca-cleaned' \
--output_dir './lora-alpaca'
I also ran the following
python finetune.py \
--base_model='decapoda-research/llama-7b-hf' \
--num_epochs=10 \
--cutoff_len=512 \
--group_by_length \
--output_dir='./lora-alpaca-512-qkvo' \
--lora_target_modules='[q_proj,k_proj,v_proj,o_proj]' \
--lora_r=16 \
--micro_batch_size=8
The resulting adapter_model.bin files in the checkpoint folders are always 443 bytes, which is different from https://huggingface.co/tloen/alpaca-lora-7b/tree/main .
I saw my loss is 0 and eval loss is nan. Maybe it is related to #418
Trying the tricks mentioned in #293