alpaca-lora
alpaca-lora copied to clipboard
AttributeError: 'NoneType' object has no attribute 'device'
I got the error as blow and hope someone can solve it. I have change the device_map(such as "balanced", "balanced_low_0", "sequential") in
model = LLaMAForCausalLM.from_pretrained(
"decapoda-research/llama-7b-hf",
load_in_8bit=True,
device_map="auto",
)
but not working.
Error
evaluate(input("Instruction: ")) # how to learn english
Instruction: how to learn english
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[16], line 1
----> 1 evaluate(input("Instruction: "))
Cell In[15], line 11, in evaluate(instruction, input)
9 inputs = tokenizer(prompt, return_tensors="pt")
10 input_ids = inputs["input_ids"].cuda()
---> 11 generation_output = model.generate(
12 input_ids=input_ids,
13 generation_config=generation_config,
14 return_dict_in_generate=True,
15 output_scores=True,
16 max_new_tokens=256
17 )
18 for s in generation_output.sequences:
19 output = tokenizer.decode(s)
File ~/miniconda3/envs/LiuJieTest/lib/python3.9/site-packages/peft/peft_model.py:581, in PeftModelForCausalLM.generate(self, **kwargs)
579 try:
580 if not isinstance(self.peft_config, PromptLearningConfig):
--> 581 outputs = self.base_model.generate(**kwargs)
582 else:
583 if "input_ids" not in kwargs:
File ~/miniconda3/envs/LiuJieTest/lib/python3.9/site-packages/torch/utils/_contextlib.py:115, in context_decorator.<locals>.decorate_context(*args, **kwargs)
112 @functools.wraps(func)
113 def decorate_context(*args, **kwargs):
114 with ctx_factory():
--> 115 return func(*args, **kwargs)
File ~/miniconda3/envs/LiuJieTest/lib/python3.9/site-packages/transformers/generation/utils.py:1490, in GenerationMixin.generate(self, inputs, generation_config, logits_processor, stopping_criteria, prefix_allowed_tokens_fn, synced_gpus, **kwargs)
1483 input_ids, model_kwargs = self._expand_inputs_for_generation(
1484 input_ids=input_ids,
1485 expand_size=generation_config.num_beams,
1486 is_encoder_decoder=self.config.is_encoder_decoder,
1487 **model_kwargs,
1488 )
1489 # 13. run beam search
-> 1490 return self.beam_search(
1491 input_ids,
1492 beam_scorer,
1493 logits_processor=logits_processor,
1494 stopping_criteria=stopping_criteria,
1495 pad_token_id=generation_config.pad_token_id,
1496 eos_token_id=generation_config.eos_token_id,
1497 output_scores=generation_config.output_scores,
1498 return_dict_in_generate=generation_config.return_dict_in_generate,
1499 synced_gpus=synced_gpus,
1500 **model_kwargs,
1501 )
1503 elif is_beam_sample_gen_mode:
1504 # 11. prepare logits warper
1505 logits_warper = self._get_logits_warper(generation_config)
File ~/miniconda3/envs/LiuJieTest/lib/python3.9/site-packages/transformers/generation/utils.py:2749, in GenerationMixin.beam_search(self, input_ids, beam_scorer, logits_processor, stopping_criteria, max_length, pad_token_id, eos_token_id, output_attentions, output_hidden_states, output_scores, return_dict_in_generate, synced_gpus, **model_kwargs)
2745 break
2747 model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
-> 2749 outputs = self(
2750 **model_inputs,
2751 return_dict=True,
2752 output_attentions=output_attentions,
2753 output_hidden_states=output_hidden_states,
2754 )
2756 if synced_gpus and this_peer_finished:
2757 cur_len = cur_len + 1
File ~/miniconda3/envs/LiuJieTest/lib/python3.9/site-packages/torch/nn/modules/module.py:1501, in Module._call_impl(self, *args, **kwargs)
1496 # If we don't have any hooks, we want to skip the rest of the logic in
1497 # this function, and just call forward.
1498 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
1499 or _global_backward_pre_hooks or _global_backward_hooks
1500 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1501 return forward_call(*args, **kwargs)
1502 # Do not call functions when jit is used
1503 full_backward_hooks, non_full_backward_hooks = [], []
File ~/miniconda3/envs/LiuJieTest/lib/python3.9/site-packages/accelerate/hooks.py:165, in add_hook_to_module.<locals>.new_forward(*args, **kwargs)
163 output = old_forward(*args, **kwargs)
164 else:
--> 165 output = old_forward(*args, **kwargs)
166 return module._hf_hook.post_forward(module, output)
File ~/miniconda3/envs/LiuJieTest/lib/python3.9/site-packages/transformers/models/llama/modeling_llama.py:770, in LLaMAForCausalLM.forward(self, input_ids, attention_mask, past_key_values, inputs_embeds, labels, use_cache, output_attentions, output_hidden_states, return_dict)
767 return_dict = return_dict if return_dict is not None else self.config.use_return_dict
769 # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
--> 770 outputs = self.model(
771 input_ids=input_ids,
772 attention_mask=attention_mask,
773 past_key_values=past_key_values,
774 inputs_embeds=inputs_embeds,
775 use_cache=use_cache,
776 output_attentions=output_attentions,
777 output_hidden_states=output_hidden_states,
778 return_dict=return_dict,
779 )
781 hidden_states = outputs[0]
782 logits = self.lm_head(hidden_states)
File ~/miniconda3/envs/LiuJieTest/lib/python3.9/site-packages/torch/nn/modules/module.py:1501, in Module._call_impl(self, *args, **kwargs)
1496 # If we don't have any hooks, we want to skip the rest of the logic in
1497 # this function, and just call forward.
1498 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
1499 or _global_backward_pre_hooks or _global_backward_hooks
1500 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1501 return forward_call(*args, **kwargs)
1502 # Do not call functions when jit is used
1503 full_backward_hooks, non_full_backward_hooks = [], []
File ~/miniconda3/envs/LiuJieTest/lib/python3.9/site-packages/transformers/models/llama/modeling_llama.py:619, in LLaMAModel.forward(self, input_ids, attention_mask, past_key_values, inputs_embeds, use_cache, output_attentions, output_hidden_states, return_dict)
612 layer_outputs = torch.utils.checkpoint.checkpoint(
613 create_custom_forward(decoder_layer),
614 hidden_states,
615 attention_mask,
616 None,
617 )
618 else:
--> 619 layer_outputs = decoder_layer(
620 hidden_states,
621 attention_mask=attention_mask,
622 past_key_value=past_key_value,
623 output_attentions=output_attentions,
624 use_cache=use_cache,
625 )
627 hidden_states = layer_outputs[0]
629 if use_cache:
File ~/miniconda3/envs/LiuJieTest/lib/python3.9/site-packages/torch/nn/modules/module.py:1501, in Module._call_impl(self, *args, **kwargs)
1496 # If we don't have any hooks, we want to skip the rest of the logic in
1497 # this function, and just call forward.
1498 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
1499 or _global_backward_pre_hooks or _global_backward_hooks
1500 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1501 return forward_call(*args, **kwargs)
1502 # Do not call functions when jit is used
1503 full_backward_hooks, non_full_backward_hooks = [], []
File ~/miniconda3/envs/LiuJieTest/lib/python3.9/site-packages/accelerate/hooks.py:165, in add_hook_to_module.<locals>.new_forward(*args, **kwargs)
163 output = old_forward(*args, **kwargs)
164 else:
--> 165 output = old_forward(*args, **kwargs)
166 return module._hf_hook.post_forward(module, output)
File ~/miniconda3/envs/LiuJieTest/lib/python3.9/site-packages/transformers/models/llama/modeling_llama.py:316, in LLaMADecoderLayer.forward(self, hidden_states, attention_mask, output_attentions, use_cache, past_key_value)
313 hidden_states = self.input_layernorm(hidden_states)
315 # Self Attention
--> 316 hidden_states, self_attn_weights, present_key_value = self.self_attn(
317 hidden_states=hidden_states,
318 past_key_value=past_key_value,
319 attention_mask=attention_mask,
320 output_attentions=output_attentions,
321 )
322 hidden_states = residual + hidden_states
324 # Fully Connected
File ~/miniconda3/envs/LiuJieTest/lib/python3.9/site-packages/torch/nn/modules/module.py:1501, in Module._call_impl(self, *args, **kwargs)
1496 # If we don't have any hooks, we want to skip the rest of the logic in
1497 # this function, and just call forward.
1498 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
1499 or _global_backward_pre_hooks or _global_backward_hooks
1500 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1501 return forward_call(*args, **kwargs)
1502 # Do not call functions when jit is used
1503 full_backward_hooks, non_full_backward_hooks = [], []
File ~/miniconda3/envs/LiuJieTest/lib/python3.9/site-packages/accelerate/hooks.py:165, in add_hook_to_module.<locals>.new_forward(*args, **kwargs)
163 output = old_forward(*args, **kwargs)
164 else:
--> 165 output = old_forward(*args, **kwargs)
166 return module._hf_hook.post_forward(module, output)
File ~/miniconda3/envs/LiuJieTest/lib/python3.9/site-packages/transformers/models/llama/modeling_llama.py:216, in LLaMAAttention.forward(self, hidden_states, past_key_value, attention_mask, output_attentions)
212 """Input shape: Batch x Time x Channel"""
214 bsz, q_len, _ = hidden_states.size()
--> 216 query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
217 key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
218 value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
File ~/miniconda3/envs/LiuJieTest/lib/python3.9/site-packages/torch/nn/modules/module.py:1501, in Module._call_impl(self, *args, **kwargs)
1496 # If we don't have any hooks, we want to skip the rest of the logic in
1497 # this function, and just call forward.
1498 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
1499 or _global_backward_pre_hooks or _global_backward_hooks
1500 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1501 return forward_call(*args, **kwargs)
1502 # Do not call functions when jit is used
1503 full_backward_hooks, non_full_backward_hooks = [], []
File ~/miniconda3/envs/LiuJieTest/lib/python3.9/site-packages/accelerate/hooks.py:165, in add_hook_to_module.<locals>.new_forward(*args, **kwargs)
163 output = old_forward(*args, **kwargs)
164 else:
--> 165 output = old_forward(*args, **kwargs)
166 return module._hf_hook.post_forward(module, output)
File ~/miniconda3/envs/LiuJieTest/lib/python3.9/site-packages/peft/tuners/lora.py:522, in Linear8bitLt.forward(self, x)
521 def forward(self, x: torch.Tensor):
--> 522 result = super().forward(x)
524 if self.disable_adapters:
525 return result
File ~/miniconda3/envs/LiuJieTest/lib/python3.9/site-packages/bitsandbytes/nn/modules.py:242, in Linear8bitLt.forward(self, x)
239 if self.bias is not None and self.bias.dtype != x.dtype:
240 self.bias.data = self.bias.data.to(x.dtype)
--> 242 out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)
243 if not self.state.has_fp16_weights:
244 if self.state.CB is not None and self.state.CxB is not None:
245 # we converted 8-bit row major to turing/ampere format in the first inference pass
246 # we no longer need the row-major weight
File ~/miniconda3/envs/LiuJieTest/lib/python3.9/site-packages/bitsandbytes/autograd/_functions.py:488, in matmul(A, B, out, state, threshold, bias)
486 if threshold > 0.0:
487 state.threshold = threshold
--> 488 return MatMul8bitLt.apply(A, B, out, bias, state)
File ~/miniconda3/envs/LiuJieTest/lib/python3.9/site-packages/torch/autograd/function.py:506, in Function.apply(cls, *args, **kwargs)
503 if not torch._C._are_functorch_transforms_active():
504 # See NOTE: [functorch vjp and autograd interaction]
505 args = _functorch.utils.unwrap_dead_wrappers(args)
--> 506 return super().apply(*args, **kwargs) # type: ignore[misc]
508 if cls.setup_context == _SingleLevelFunction.setup_context:
509 raise RuntimeError(
510 'In order to use an autograd.Function with functorch transforms '
511 '(vmap, grad, jvp, jacrev, ...), it must override the setup_context '
512 'staticmethod. For more details, please see '
513 'https://pytorch.org/docs/master/notes/extending.func.html')
File ~/miniconda3/envs/LiuJieTest/lib/python3.9/site-packages/bitsandbytes/autograd/_functions.py:317, in MatMul8bitLt.forward(ctx, A, B, out, bias, state)
313 else:
314 if state.CxB is None and using_igemmlt:
315 # B in in 8-bit row-major, we can transform it back to 16-bit to extract outlier dimensions
316 # we also need to convert it to the turing/ampere format
--> 317 state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
318 else:
319 if not state.has_fp16_weights and state.CxB is None and using_igemmlt:
File ~/miniconda3/envs/LiuJieTest/lib/python3.9/site-packages/bitsandbytes/functional.py:1698, in transform(A, to_order, from_order, out, transpose, state, ld)
1697 def transform(A, to_order, from_order='row', out=None, transpose=False, state=None, ld=None):
-> 1698 prev_device = pre_call(A.device)
1699 if state is None: state = (A.shape, from_order)
1700 else: from_order = state[1]
AttributeError: 'NoneType' object has no attribute 'device'
Enviroment:
- !nvidia-smi
Thu Mar 16 16:37:03 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 510.39.01 Driver Version: 510.39.01 CUDA Version: 11.6 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 NVIDIA GeForce ... Off | 00000000:1A:00.0 Off | N/A |
| 31% 32C P2 50W / 250W | 8012MiB / 11264MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 1 NVIDIA GeForce ... Off | 00000000:3D:00.0 Off | N/A |
| 29% 31C P2 50W / 250W | 4350MiB / 11264MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 3903 C ...nvs/LiuJieTest/bin/python 8009MiB |
| 1 N/A N/A 3903 C ...nvs/LiuJieTest/bin/python 4347MiB |
+-----------------------------------------------------------------------------+
- conda list
# packages in environment at /home/zhuji/miniconda3/envs/LiuJieTest:
#
# Name Version Build Channel
_libgcc_mutex 0.1 main
_openmp_mutex 5.1 1_gnu
accelerate 0.17.1 pypi_0 pypi
aiohttp 3.8.4 pypi_0 pypi
aiosignal 1.3.1 pypi_0 pypi
anyio 3.6.2 pypi_0 pypi
argon2-cffi 21.3.0 pypi_0 pypi
argon2-cffi-bindings 21.2.0 pypi_0 pypi
arrow 1.2.3 pypi_0 pypi
asgiref 3.6.0 pypi_0 pypi
asttokens 2.2.1 pypi_0 pypi
async-timeout 4.0.2 pypi_0 pypi
attrs 22.2.0 pypi_0 pypi
backcall 0.2.0 pypi_0 pypi
beautifulsoup4 4.11.2 pypi_0 pypi
bitsandbytes 0.37.1 pypi_0 pypi
bleach 6.0.0 pypi_0 pypi
ca-certificates 2023.01.10 h06a4308_0
certifi 2022.12.7 py39h06a4308_0
cffi 1.15.1 pypi_0 pypi
charset-normalizer 3.1.0 pypi_0 pypi
cmake 3.26.0 pypi_0 pypi
comm 0.1.2 pypi_0 pypi
datasets 2.10.1 pypi_0 pypi
debugpy 1.6.6 pypi_0 pypi
decorator 5.1.1 pypi_0 pypi
defusedxml 0.7.1 pypi_0 pypi
dill 0.3.6 pypi_0 pypi
django 4.1.7 pypi_0 pypi
executing 1.2.0 pypi_0 pypi
fastjsonschema 2.16.3 pypi_0 pypi
filelock 3.10.0 pypi_0 pypi
fqdn 1.5.1 pypi_0 pypi
frozenlist 1.3.3 pypi_0 pypi
fsspec 2023.3.0 pypi_0 pypi
huggingface-hub 0.13.2 pypi_0 pypi
idna 3.4 pypi_0 pypi
importlib-metadata 6.0.0 pypi_0 pypi
ipykernel 6.21.3 pypi_0 pypi
ipython 8.11.0 pypi_0 pypi
ipython-genutils 0.2.0 pypi_0 pypi
ipywidgets 8.0.4 pypi_0 pypi
isoduration 20.11.0 pypi_0 pypi
jedi 0.18.2 pypi_0 pypi
jinja2 3.1.2 pypi_0 pypi
jsonpointer 2.3 pypi_0 pypi
jsonschema 4.17.3 pypi_0 pypi
jupyter 1.0.0 pypi_0 pypi
jupyter-client 8.0.3 pypi_0 pypi
jupyter-console 6.6.3 pypi_0 pypi
jupyter-core 5.2.0 pypi_0 pypi
jupyter-events 0.6.3 pypi_0 pypi
jupyter-server 2.4.0 pypi_0 pypi
jupyter-server-terminals 0.4.4 pypi_0 pypi
jupyterlab-pygments 0.2.2 pypi_0 pypi
jupyterlab-widgets 3.0.5 pypi_0 pypi
ld_impl_linux-64 2.38 h1181459_1
libffi 3.4.2 h6a678d5_6
libgcc-ng 11.2.0 h1234567_1
libgomp 11.2.0 h1234567_1
libstdcxx-ng 11.2.0 h1234567_1
lit 15.0.7 pypi_0 pypi
loralib 0.1.1 pypi_0 pypi
markupsafe 2.1.2 pypi_0 pypi
matplotlib-inline 0.1.6 pypi_0 pypi
mistune 2.0.5 pypi_0 pypi
mpmath 1.3.0 pypi_0 pypi
multidict 6.0.4 pypi_0 pypi
multiprocess 0.70.14 pypi_0 pypi
nbclassic 0.5.3 pypi_0 pypi
nbclient 0.7.2 pypi_0 pypi
nbconvert 7.2.10 pypi_0 pypi
nbformat 5.7.3 pypi_0 pypi
ncurses 6.4 h6a678d5_0
nest-asyncio 1.5.6 pypi_0 pypi
networkx 3.0 pypi_0 pypi
notebook 6.5.3 pypi_0 pypi
notebook-shim 0.2.2 pypi_0 pypi
numpy 1.24.2 pypi_0 pypi
nvidia-cublas-cu11 11.10.3.66 pypi_0 pypi
nvidia-cuda-cupti-cu11 11.7.101 pypi_0 pypi
nvidia-cuda-nvrtc-cu11 11.7.99 pypi_0 pypi
nvidia-cuda-runtime-cu11 11.7.99 pypi_0 pypi
nvidia-cudnn-cu11 8.5.0.96 pypi_0 pypi
nvidia-cufft-cu11 10.9.0.58 pypi_0 pypi
nvidia-curand-cu11 10.2.10.91 pypi_0 pypi
nvidia-cusolver-cu11 11.4.0.1 pypi_0 pypi
nvidia-cusparse-cu11 11.7.4.91 pypi_0 pypi
nvidia-nccl-cu11 2.14.3 pypi_0 pypi
nvidia-nvtx-cu11 11.7.91 pypi_0 pypi
openssl 1.1.1t h7f8727e_0
packaging 23.0 pypi_0 pypi
pandas 1.5.3 pypi_0 pypi
pandocfilters 1.5.0 pypi_0 pypi
parso 0.8.3 pypi_0 pypi
peft 0.3.0.dev0 pypi_0 pypi
pexpect 4.8.0 pypi_0 pypi
pickleshare 0.7.5 pypi_0 pypi
pip 23.0.1 py39h06a4308_0
platformdirs 3.1.1 pypi_0 pypi
prometheus-client 0.16.0 pypi_0 pypi
prompt-toolkit 3.0.38 pypi_0 pypi
psutil 5.9.4 pypi_0 pypi
ptyprocess 0.7.0 pypi_0 pypi
pure-eval 0.2.2 pypi_0 pypi
pyarrow 11.0.0 pypi_0 pypi
pycparser 2.21 pypi_0 pypi
pygments 2.14.0 pypi_0 pypi
pyrsistent 0.19.3 pypi_0 pypi
python 3.9.16 h7a1cb2a_2
python-dateutil 2.8.2 pypi_0 pypi
python-json-logger 2.0.7 pypi_0 pypi
pytz 2022.7.1 pypi_0 pypi
pyyaml 6.0 pypi_0 pypi
pyzmq 25.0.1 pypi_0 pypi
qtconsole 5.4.1 pypi_0 pypi
qtpy 2.3.0 pypi_0 pypi
readline 8.2 h5eee18b_0
regex 2022.10.31 pypi_0 pypi
requests 2.28.2 pypi_0 pypi
responses 0.18.0 pypi_0 pypi
rfc3339-validator 0.1.4 pypi_0 pypi
rfc3986-validator 0.1.1 pypi_0 pypi
send2trash 1.8.0 pypi_0 pypi
sentencepiece 0.1.97 pypi_0 pypi
setuptools 65.6.3 py39h06a4308_0
six 1.16.0 pypi_0 pypi
sniffio 1.3.0 pypi_0 pypi
soupsieve 2.4 pypi_0 pypi
sqlite 3.41.1 h5eee18b_0
sqlparse 0.4.3 pypi_0 pypi
stack-data 0.6.2 pypi_0 pypi
sympy 1.11.1 pypi_0 pypi
terminado 0.17.1 pypi_0 pypi
tinycss2 1.2.1 pypi_0 pypi
tk 8.6.12 h1ccaba5_0
tokenizers 0.13.2 pypi_0 pypi
torch 2.0.0 pypi_0 pypi
tornado 6.2 pypi_0 pypi
tqdm 4.65.0 pypi_0 pypi
traitlets 5.9.0 pypi_0 pypi
transformers 4.27.0.dev0 pypi_0 pypi
triton 2.0.0 pypi_0 pypi
typing-extensions 4.5.0 pypi_0 pypi
tzdata 2022g h04d1e81_0
uri-template 1.2.0 pypi_0 pypi
urllib3 1.26.15 pypi_0 pypi
wcwidth 0.2.6 pypi_0 pypi
webcolors 1.12 pypi_0 pypi
webencodings 0.5.1 pypi_0 pypi
websocket-client 1.5.1 pypi_0 pypi
wheel 0.38.4 py39h06a4308_0
widgetsnbextension 4.0.5 pypi_0 pypi
xxhash 3.2.0 pypi_0 pypi
xz 5.2.10 h5eee18b_1
yarl 1.8.2 pypi_0 pypi
zipp 3.15.0 pypi_0 pypi
zlib 1.2.13 h5eee18b_0
3.pip list
Package Version
------------------------ -----------
accelerate 0.17.1
aiohttp 3.8.4
aiosignal 1.3.1
anyio 3.6.2
argon2-cffi 21.3.0
argon2-cffi-bindings 21.2.0
arrow 1.2.3
asgiref 3.6.0
asttokens 2.2.1
async-timeout 4.0.2
attrs 22.2.0
backcall 0.2.0
beautifulsoup4 4.11.2
bitsandbytes 0.37.1
bleach 6.0.0
certifi 2022.12.7
cffi 1.15.1
charset-normalizer 3.1.0
cmake 3.26.0
comm 0.1.2
datasets 2.10.1
debugpy 1.6.6
decorator 5.1.1
defusedxml 0.7.1
dill 0.3.6
Django 4.1.7
executing 1.2.0
fastjsonschema 2.16.3
filelock 3.10.0
fqdn 1.5.1
frozenlist 1.3.3
fsspec 2023.3.0
huggingface-hub 0.13.2
idna 3.4
importlib-metadata 6.0.0
ipykernel 6.21.3
ipython 8.11.0
ipython-genutils 0.2.0
ipywidgets 8.0.4
isoduration 20.11.0
jedi 0.18.2
Jinja2 3.1.2
jsonpointer 2.3
jsonschema 4.17.3
jupyter 1.0.0
jupyter_client 8.0.3
jupyter-console 6.6.3
jupyter_core 5.2.0
jupyter-events 0.6.3
jupyter_server 2.4.0
jupyter_server_terminals 0.4.4
jupyterlab-pygments 0.2.2
jupyterlab-widgets 3.0.5
lit 15.0.7
loralib 0.1.1
MarkupSafe 2.1.2
matplotlib-inline 0.1.6
mistune 2.0.5
mpmath 1.3.0
multidict 6.0.4
multiprocess 0.70.14
nbclassic 0.5.3
nbclient 0.7.2
nbconvert 7.2.10
nbformat 5.7.3
nest-asyncio 1.5.6
networkx 3.0
notebook 6.5.3
notebook_shim 0.2.2
numpy 1.24.2
nvidia-cublas-cu11 11.10.3.66
nvidia-cuda-cupti-cu11 11.7.101
nvidia-cuda-nvrtc-cu11 11.7.99
nvidia-cuda-runtime-cu11 11.7.99
nvidia-cudnn-cu11 8.5.0.96
nvidia-cufft-cu11 10.9.0.58
nvidia-curand-cu11 10.2.10.91
nvidia-cusolver-cu11 11.4.0.1
nvidia-cusparse-cu11 11.7.4.91
nvidia-nccl-cu11 2.14.3
nvidia-nvtx-cu11 11.7.91
packaging 23.0
pandas 1.5.3
pandocfilters 1.5.0
parso 0.8.3
peft 0.3.0.dev0
pexpect 4.8.0
pickleshare 0.7.5
pip 23.0.1
platformdirs 3.1.1
prometheus-client 0.16.0
prompt-toolkit 3.0.38
psutil 5.9.4
ptyprocess 0.7.0
pure-eval 0.2.2
pyarrow 11.0.0
pycparser 2.21
Pygments 2.14.0
pyrsistent 0.19.3
python-dateutil 2.8.2
python-json-logger 2.0.7
pytz 2022.7.1
PyYAML 6.0
pyzmq 25.0.1
qtconsole 5.4.1
QtPy 2.3.0
regex 2022.10.31
requests 2.28.2
responses 0.18.0
rfc3339-validator 0.1.4
rfc3986-validator 0.1.1
Send2Trash 1.8.0
sentencepiece 0.1.97
setuptools 65.6.3
six 1.16.0
sniffio 1.3.0
soupsieve 2.4
sqlparse 0.4.3
stack-data 0.6.2
sympy 1.11.1
terminado 0.17.1
tinycss2 1.2.1
tokenizers 0.13.2
torch 2.0.0
tornado 6.2
tqdm 4.65.0
traitlets 5.9.0
transformers 4.27.0.dev0
triton 2.0.0
typing_extensions 4.5.0
uri-template 1.2.0
urllib3 1.26.15
wcwidth 0.2.6
webcolors 1.12
webencodings 0.5.1
websocket-client 1.5.1
wheel 0.38.4
widgetsnbextension 4.0.5
xxhash 3.2.0
yarl 1.8.2
zipp 3.15.0
Try this : https://github.com/tloen/alpaca-lora/issues/14#issuecomment-1471263165
Try this : #14 (comment)
Thank you very much for your help, I modified the following code to finish running the program.
model = PeftModel.from_pretrained( model, "tloen/alpaca-lora-7b", device_map={'':0})

Try this : #14 (comment)
I find a more appropriate approach to deploy the model.
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf", device_map={'':0})
model = LlamaForCausalLM.from_pretrained(
"decapoda-research/llama-7b-hf",
load_in_8bit=True,
torch_dtype=torch.float16,
device_map={'':0}
)
# add device_map={'':0} in PeftModel.from_pretrained to confirm 2 2080Ti can work
model = PeftModel.from_pretrained(
model, "tloen/alpaca-lora-7b", torch_dtype=torch.float16, device_map={'':0}
)
When I download the colab code and run it in my GPU server, which is different with git clone the repository to run. I modified the code and tested by my 2 2080Ti GPU server and pulled my code.
generate used to work for me but i rebuilt it today and now i'm getting the same error... Note that I only have a single GPU, so this doesn't have anything to do with having multiple.
generate used to work for me but i rebuilt it today and now i'm getting the same error... Note that I only have a single GPU, so this doesn't have anything to do with having multiple.
I have the same problem, help!!!