cs-stereo
cs-stereo copied to clipboard
Deep Material-aware Cross-spectral Stereo Matching (CVPR 2018)
Deep Material-aware Cross-spectral Stereo Matching
Tiancheng Zhi, Bernardo R. Pires, Martial Hebert, Srinivasa G. Narasimhan
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
Disclaimer
This is an improved and simplified version of the CVPR code. Compared with the original CVPR version, this code achieves a better performance (see pretrained model below). Main changes include:
- No white balancing in STN
- Use normal convolution instead of symmetric convolution in STN
- Randomly flip the input and output of STN
- Use learning rate scheduler
- Hyperparameter changes
To compare with the original CVPR result, please refer to the project page (first download link to the dataset).
Requirements
- TITAN Xp GPU * 2
- Ubuntu 16.04
- Python 3
- PyTorch 1.0
- OpenCV
- Visdom (for visualization)
Data
Download rgbnir_stereo, and move "data" and "lists" into the "cs-stereo" folder.
Download precomputed_material, and put it under the "cs-stereo" folder.
Then run:
sh cp_material.sh precomputed_material data
See project page for more information and downlad links of PittsStereo Dataset.
Training
CUDA_VISIBLE_DEVICES=1,0 python3 train.py
Testing
CUDA_VISIBLE_DEVICES=1,0 python3 test.py --ckpt-path ckpt/47.pth
Pretrained Model
Download pretrained.pth
Performance (RMSE, lower is better):
Model | Common | Light | Glass | Glossy | Vegetation | Skin | Clothing | Bag | Mean |
---|---|---|---|---|---|---|---|---|---|
CVPR'18 | 0.53 | 0.69 | 0.65 | 0.70 | 0.72 | 1.15 | 1.15 | 0.80 | 0.80 |
Pretrained | 0.47 | 0.56 | 0.56 | 0.61 | 0.72 | 0.93 | 0.91 | 0.86 | 0.70 |