kfs
kfs copied to clipboard
NadamAccum not working on Keras 2.0.8
I am getting this error when using NadamAccum as the optimizer in model.compile(optimizer=kfs.optimizers.NadamAccum(accum_iters=2), ...):
TypeError: get_updates() missing 1 required positional argument: 'constraints'
Looking at the the Keras optimizers.py I see that get_updates() is defined as def get_updates(self, loss, params).
Which version of Keras is currently supported? Or am I just doing it wrong 😉.
I am having this same problem with Keras version 2.0.9, except I am using the Adam optimizer. Have you figured it out? Any help will be appreciated.
Hello guys,
I have tried to rewrite the function:
get_updates
in file:
kfs/kfs/optimizers.py
at this class:
class NadamAccum(Optimizer)
and it seems working now. Any feedbacks would be appreciated 😃 😃 😃
def get_updates(self, loss, params):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
t = (self.iterations + 1.)/self.accum_iters
accum_switch = K.cast(K.equal((self.iterations + 1.) % self.accum_iters, 0), dtype=K.floatx())
# Due to the recommendations in [2], i.e. warming momentum schedule
momentum_cache_t = self.beta_1 * (1. - 0.5 * (K.pow(0.96, t * self.schedule_decay)))
momentum_cache_t_1 = self.beta_1 * (1. - 0.5 * (K.pow(0.96, (t + 1) * self.schedule_decay)))
m_schedule_new = self.m_schedule * momentum_cache_t
m_schedule_next = self.m_schedule * momentum_cache_t * momentum_cache_t_1
self.updates.append((self.m_schedule, accum_switch*m_schedule_new + (1. - accum_switch)*self.m_schedule))
shapes = [x.shape for x in K.batch_get_value(params)]
ms = [K.zeros(shape) for shape in shapes]
vs = [K.zeros(shape) for shape in shapes]
gs = [K.zeros(shape) for shape in shapes]
self.weights = [self.iterations] + ms + vs
for p, gp, m, v, ga in zip(params, grads, ms, vs, gs):
g = (ga + gp)/self.accum_iters
# the following equations given in [1]
g_prime = g / (1. - m_schedule_new)
m_t = self.beta_1 * m + (1. - self.beta_1) * g
m_t_prime = m_t / (1. - m_schedule_next)
v_t = self.beta_2 * v + (1. - self.beta_2) * K.square(g)
v_t_prime = v_t / (1. - K.pow(self.beta_2, t))
m_t_bar = (1. - momentum_cache_t) * g_prime + momentum_cache_t_1 * m_t_prime
self.updates.append(K.update(m, (1. - accum_switch)*m + accum_switch*m_t))
self.updates.append(K.update(v, (1. - accum_switch)*v + accum_switch*v_t))
self.updates.append(K.update(ga, (1. - accum_switch)*(ga + gp)))
p_t = p - self.lr * m_t_bar / (K.sqrt(v_t_prime) + self.epsilon)
new_p = p_t
# Apply constraints.
if getattr(p, 'constraint', None) is not None:
c = constraints[p]
new_p = c(new_p)
self.updates.append(K.update(p, (1-accum_switch)*p + accum_switch*new_p))
return self.updates