privacy
privacy copied to clipboard
Potential bug using kernel regularizer
I got a ValueError when using TensorFlow to create a model. Based on the error there is a problem that occurs with the kernel regularizer applied on the Conv2D layer and the mean squared error function. I used the L1 regularizer provided by the TensorFlow keras package. I've tried setting different values for the L1 regularization factor and even setting the value to 0, but I get the same error. My model works fine if i get rid of the kernel_regularizer argument. I'm just wondering if this is some type of bug?
Context: Creating a model that predicts phenotype traits given genotypes and phenotypes datasets. The genotype input data has 4276 samples, and the input shape that the model takes is (28220,1). My labels represent the phenotype data. The labels include 4276 samples with 20 as the number of phenotype traits in the dataset. In this model we use differential privacy(DP) and add it to a CNN model which uses the Mean squared error loss function and the DPKerasAdamOptimizer to add DP.
Here is my code I also will provide an attachment with the code:
`from future import absolute_import from future import division from future import print_function
!pip install tensorflow-privacy import numpy as np import tensorflow as tf from tensorflow_privacy import * import tensorflow_privacy
from matplotlib import pyplot as plt import pylab as pl import numpy as np import pandas as pd
from tensorflow.keras.models import Model from tensorflow.keras import datasets, layers, models, losses from tensorflow.keras import backend as bke from tensorflow.keras.optimizers import Adam from tensorflow.keras.regularizers import l1, l2, l1_l2
from sklearn import preprocessing from sklearn.model_selection import train_test_split
batch_size = 32 epochs = 4 microbatches = 8
inChannel = 1 kr = 0 num_kernels=8 drop_perc=0.25 dim = 1
l2_norm_clip = 1.5 noise_multiplier = 1.3
learning_rate = 0.25 latent_dim = 0
def print_datashape(): print('genotype data: ', genotype_data.shape) print('phenotype data: ', single_pheno.shape)
genotype_data = tf.random.uniform([4276, 28220],1,3, dtype=tf.dtypes.int32) phenotype_data = tf.random.uniform([4276, 20],-4.359688,34,dtype=tf.dtypes.float32)
genotype_data = genotype_data.numpy() phenotype_data = phenotype_data.numpy()
small_geno = genotype_data single_pheno = phenotype_data[:, 1]
print_datashape()
df = small_geno min_max_scaler = preprocessing.MinMaxScaler() df = min_max_scaler.fit_transform(df) scaled_pheno = min_max_scaler.fit_transform(single_pheno.reshape(-1,1)).reshape(-1)
feature_size= df.shape[1] df = df.reshape(-1, feature_size, 1, 1)
train_data,test_data,train_Y,test_Y = train_test_split(df, scaled_pheno, test_size=0.2, random_state=13) train_X,valid_X,train_Y,valid_Y = train_test_split(train_data, train_Y, test_size=0.2, random_state=13)
def print_shapes(): print('train_X: {}'.format(train_X.shape)) print('train_Y: {}'.format(train_Y.shape)) print('valid_X: {}'.format(valid_X.shape)) print('valid_Y: {}'.format(valid_Y.shape))
input_shape= (feature_size, dim, inChannel)
predictor = tf.keras.Sequential() predictor.add(layers.Conv2D(num_kernels, (5,1), padding='same', strides=(12, 1), activation='relu', kernel_regularizer=tf.keras.regularizers.L1(kr),input_shape= input_shape)) predictor.add(layers.AveragePooling2D(pool_size=(2,1))) predictor.add(layers.Dropout(drop_perc)) predictor.add(layers.Flatten()) predictor.add(layers.Dense(int(feature_size / 4), activation='relu')) predictor.add(layers.Dropout(drop_perc)) predictor.add(layers.Dense(int(feature_size / 10), activation='relu')) predictor.add(layers.Dropout(drop_perc)) predictor.add(layers.Dense(1))
mse = tf.keras.losses.MeanSquaredError(reduction=tf.keras.losses.Reduction.NONE) optimizer = DPKerasAdamOptimizer(learning_rate=learning_rate, l2_norm_clip=l2_norm_clip, noise_multiplier=noise_multiplier, num_microbatches=microbatches)
predictor.compile(loss=mse, optimizer=optimizer, metrics=['mse'])
predictor.summary()
print_shapes()
predictor.fit(train_X, train_Y,batch_size=batch_size,epochs=epochs,verbose=1, validation_data=(valid_X, valid_Y))`
ValueError: Shapes must be equal rank, but are 1 and 0 From merging shape 0 with other shapes. for '{{node AddN}} = AddN[N=2, T=DT_FLOAT](mean_squared_error/weighted_loss/Mul, conv2d_2/kernel/Regularizer/mul)' with input shapes: [?], [].