model-optimization icon indicating copy to clipboard operation
model-optimization copied to clipboard

Custom layer with Concat afterwards causes an error during QAT modeling

Open mhyeonsoo opened this issue 1 year ago • 3 comments

Prior to filing: check that this should be a bug instead of a feature request. Everything supported, including the compatible versions of TensorFlow, is listed in the overview page of each technique. For example, the overview page of quantization-aware training is here. An issue for anything not supported should be a feature request.

Describe the bug I am building a model that returns feature embedding as an output. I used MobileNetV3Largs as a baseline with include_top=False option.

after the baseline, I have few layers and concat them at the end of the model.

When I tried to apply QAT on the model though, it returns the error saying:

TypeError: 'str' object is not callable

System information

TensorFlow version (installed from source or binary): 2.15.0

TensorFlow Model Optimization version (installed from source or binary): 0.7.5

Python version: 3.11.7

Describe the expected behavior QAT model generated well.

Describe the current behavior

TypeError: 'str' object is not callable

Code to reproduce the issue Provide a reproducible code that is the bare minimum necessary to generate the problem.

def build_model(args, include_preprocessing=False):
    IMG_SHAPE = (args.input_dim, args.input_dim, 3)
    # Transfer learning model with MobileNetV3
    base_model = tf.keras.applications.MobileNetV3Large(
        input_shape=IMG_SHAPE,
        include_top=False,
        weights='imagenet',
        minimalistic=True,
        include_preprocessing=include_preprocessing
    )
    # Freeze the pre-trained model weights
    base_model.trainable = False
    cl1 = CustomLayer()(base_model.output)
    cl1 = tf.keras.layers.Dropout(0.2, name="dropout_cl1")(cl1)
    
    cl2 = CustomLayer()(base_model.output)
    cl2 = tf.keras.layers.Dropout(0.2, name="dropout_gd2")(gd2)
    
    cl3 = CustomLayer()(base_model.output)
    cl3 = tf.keras.layers.Dropout(0.2, name="dropout_cl1")(cl3)

    concat_cls = tf.keras.layers.Concatenate()([cl1, cl2, cl3])

    x = tf.keras.layers.Dense(512, activation='swish')(concat_cls) # No activation on final dense layer
    model = tf.keras.Model(base_model.input, x)
    
    return model

# This is initial training loop before QAT --> this returns few epoch trained model
model = build_model(args)
model = initial_training(args, model)

def apply_quantization_to_dense(layer):
    if isinstance(layer, tf.keras.layers.Dense):
        return tfmot.quantization.keras.quantize_annotate_layer(layer)
    return layer

annotated_model = tf.keras.models.clone_model(
    model,
    clone_function=apply_quantization_to_dense,
)

quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model)

Screenshots If applicable, add screenshots to help explain your problem.

Additional context Add any other context about the problem here.

mhyeonsoo avatar Mar 27 '24 02:03 mhyeonsoo

@mhyeonsoo

Thanks for your reporting.

Could you give complete script, including CustomLayer implementation, if available?

(Reproducible and runnable Colab link is also good to communicate.)

tucan9389 avatar Apr 01 '24 01:04 tucan9389

@tucan9389

Thanks for the response. due to the policy, I am not able to share the full code or reproducible colab. But I can share the CustomLayer implementation I guess. Below is the one that I am using.

class CustomLayer(tf.keras.layers.Layer):
    def __init__(self, p=1, **kwargs):
        super(CustomLayer, self).__init__(**kwargs)
        self.p = p

    def call(self, inputs):
        assert len(inputs.shape) == 4, 'the input tensor of CustomLayer must be the shape of [B, H, W, C]'
        if self.p == 1:
            return tf.reduce_mean(inputs, axis=[1, 2])
        elif self.p == float('inf'):
            return tf.reshape(tf.reduce_max(inputs, axis=[1, 2]), shape=[-1, inputs.shape[-1]])
        else:
            sum_value = tf.reduce_mean(tf.pow(inputs, self.p), axis=[1, 2])
            return tf.sign(sum_value) * tf.pow(tf.abs(sum_value), 1.0 / self.p)

    def get_config(self):
        config = super(CustomLayer, self).get_config()
        config.update({"p": self.p})
        return config

please feel free to tell me if any other things are needed!

thanks,

mhyeonsoo avatar Apr 01 '24 01:04 mhyeonsoo

@tucan9389

Hi, can I ask if there is any update for this?

Thanks,

mhyeonsoo avatar Apr 11 '24 02:04 mhyeonsoo