Error in MovingAverageQuantizer with per_axis=True due to missing parameters in _add_range_weights
Describe the bug
Using the MovingAverageQuantizer with parameter per_axis set to True results in this error:
tensorflow_model_optimization\python\core\quantization\keras\quant_ops.py", line 335, in _FakeQuantWithMinMaxVars * assert len(min_var.get_shape()) == 1
It's caused by this helper function _add_range_weights called by the build function of the MovingAverageQuantizer where the per_axis and tensor_shape parameters are not passed on resulting in only initializing a scalar for the min/max variables. Which later fails the assert.
System information
TensorFlow version: 2.12.0 (binary)
TensorFlow Model Optimization version: 0.7.4 (binary)
Python version: 3.9.16
Describe the expected behavior There should be a list of values in the min/max variables.
Describe the current behavior
Throws and error because of failed assert in _FakeQuantWithMinMaxVars
Code to reproduce the issue
import keras
import tensorflow_model_optimization as tfmot
class CustomConv2DQuantizeConfig(tfmot.quantization.keras.QuantizeConfig):
def get_weights_and_quantizers(self, layer):
return [(layer.kernel, tfmot.quantization.keras.quantizers.MovingAverageQuantizer(num_bits=8, per_axis=True, symmetric=True, narrow_range=True))]
def get_activations_and_quantizers(self, layer):
return [(layer.activation, tfmot.quantization.keras.quantizers.MovingAverageQuantizer(num_bits=8, per_axis=False, symmetric=False, narrow_range=False))]
def set_quantize_weights(self, layer, quantize_weights):
layer.kernel = quantize_weights[0]
def set_quantize_activations(self, layer, quantize_activations):
layer.activation = quantize_activations[0]
def get_output_quantizers(self, layer):
return []
def get_config(self):
return {}
annotated_model = keras.Sequential([
keras.Input(shape=(32,32,3)),
tfmot.quantization.keras.quantize_annotate_layer(keras.layers.Conv2D(32, kernel_size=(3, 3)), CustomConv2DQuantizeConfig())
])
with tfmot.quantization.keras.quantize_scope(
{'CustomConv2DQuantizeConfig': CustomConv2DQuantizeConfig}):
quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model)
Additional context
Changing the build function of MovingAverageQuantizer to pass the mentioned parameters like:
def build(self, tensor_shape, name, layer):
return self._add_range_weights(layer, name, self.per_axis, tensor_shape)
fixes the issue and results in the expected behavior.