docs
docs copied to clipboard
Added Random Normal Init and fixed optimizer hyperparameters
In response to the discussions in this pull request, this pull request adds Random normal initializer with mean 0 and std-dev 1, and fixes the optimizer hyper-parameters as per DC-GAN paper.
I am sure there is a more graceful way to do this, but I found this way much easier than to fix code in the same pull request. Sorry about that!
Preview
Preview and run these notebook edits with Google Colab:- site/en/guide/advanced_autodiff.ipynb
- site/en/guide/autodiff.ipynb
- site/en/guide/basic_training_loops.ipynb
- site/en/guide/checkpoint.ipynb
- site/en/guide/data.ipynb
- site/en/guide/data_performance.ipynb
- site/en/guide/distributed_training.ipynb
- site/en/guide/eager.ipynb
- site/en/guide/estimator.ipynb
- site/en/guide/function.ipynb
- site/en/guide/gpu.ipynb
- site/en/guide/graph_optimization.ipynb
- site/en/guide/intro_to_graphs.ipynb
- site/en/guide/intro_to_modules.ipynb
- site/en/guide/migrate.ipynb
- site/en/guide/mixed_precision.ipynb
- site/en/guide/ragged_tensor.ipynb
- site/en/guide/random_numbers.ipynb
- site/en/guide/saved_model.ipynb
- site/en/guide/tensor.ipynb
- site/en/guide/tf_numpy.ipynb
- site/en/guide/tpu.ipynb
- site/en/guide/upgrade.ipynb
- site/en/guide/variable.ipynb
- site/en/r1/guide/autograph.ipynb
- site/en/r1/guide/distribute_strategy.ipynb
- site/en/r1/guide/eager.ipynb
- site/en/r1/guide/keras.ipynb
- site/en/r1/guide/ragged_tensors.ipynb
- site/en/r1/tutorials/_index.ipynb
- site/en/r1/tutorials/distribute/keras.ipynb
- site/en/r1/tutorials/distribute/tpu_custom_training.ipynb
- site/en/r1/tutorials/distribute/training_loops.ipynb
- site/en/r1/tutorials/eager/automatic_differentiation.ipynb
- site/en/r1/tutorials/eager/custom_layers.ipynb
- site/en/r1/tutorials/eager/custom_training.ipynb
- site/en/r1/tutorials/eager/custom_training_walkthrough.ipynb
- site/en/r1/tutorials/eager/eager_basics.ipynb
- site/en/r1/tutorials/estimators/boosted_trees.ipynb
- site/en/r1/tutorials/estimators/boosted_trees_model_understanding.ipynb
- site/en/r1/tutorials/estimators/cnn.ipynb
- site/en/r1/tutorials/estimators/linear.ipynb
- site/en/r1/tutorials/images/hub_with_keras.ipynb
- site/en/r1/tutorials/images/transfer_learning.ipynb
- site/en/r1/tutorials/keras/basic_classification.ipynb
- site/en/r1/tutorials/keras/basic_regression.ipynb
- site/en/r1/tutorials/keras/basic_text_classification.ipynb
- site/en/r1/tutorials/keras/overfit_and_underfit.ipynb
- site/en/r1/tutorials/keras/save_and_restore_models.ipynb
- site/en/r1/tutorials/load_data/images.ipynb
- site/en/r1/tutorials/load_data/tf_records.ipynb
- site/en/r1/tutorials/non-ml/mandelbrot.ipynb
- site/en/r1/tutorials/non-ml/pdes.ipynb
- site/en/r1/tutorials/representation/unicode.ipynb
- site/en/r1/tutorials/sequences/text_generation.ipynb
- site/en/tutorials/customization/basics.ipynb
- site/en/tutorials/customization/custom_layers.ipynb
- site/en/tutorials/customization/custom_training.ipynb
- site/en/tutorials/customization/custom_training_walkthrough.ipynb
- site/en/tutorials/distribute/custom_training.ipynb
- site/en/tutorials/distribute/input.ipynb
- site/en/tutorials/distribute/keras.ipynb
- site/en/tutorials/distribute/multi_worker_with_estimator.ipynb
- site/en/tutorials/distribute/multi_worker_with_keras.ipynb
- site/en/tutorials/distribute/save_and_load.ipynb
- site/en/tutorials/estimator/boosted_trees.ipynb
- site/en/tutorials/estimator/boosted_trees_model_understanding.ipynb
- site/en/tutorials/estimator/keras_model_to_estimator.ipynb
- site/en/tutorials/estimator/linear.ipynb
- site/en/tutorials/estimator/premade.ipynb
- site/en/tutorials/generative/adversarial_fgsm.ipynb
- site/en/tutorials/generative/autoencoder.ipynb
- site/en/tutorials/generative/cvae.ipynb
- site/en/tutorials/generative/cyclegan.ipynb
- site/en/tutorials/generative/dcgan.ipynb
- site/en/tutorials/generative/deepdream.ipynb
- site/en/tutorials/generative/pix2pix.ipynb
- site/en/tutorials/generative/style_transfer.ipynb
- site/en/tutorials/images/classification.ipynb
- site/en/tutorials/images/cnn.ipynb
- site/en/tutorials/images/data_augmentation.ipynb
- site/en/tutorials/images/segmentation.ipynb
- site/en/tutorials/images/transfer_learning.ipynb
- site/en/tutorials/images/transfer_learning_with_hub.ipynb
- site/en/tutorials/interpretability/integrated_gradients.ipynb
- site/en/tutorials/keras/classification.ipynb
- site/en/tutorials/keras/keras_tuner.ipynb
- site/en/tutorials/keras/overfit_and_underfit.ipynb
- site/en/tutorials/keras/regression.ipynb
- site/en/tutorials/keras/save_and_load.ipynb
- site/en/tutorials/keras/text_classification.ipynb
- site/en/tutorials/keras/text_classification_with_hub.ipynb
- site/en/tutorials/load_data/csv.ipynb
- site/en/tutorials/load_data/images.ipynb
- site/en/tutorials/load_data/numpy.ipynb
- site/en/tutorials/load_data/pandas_dataframe.ipynb
- site/en/tutorials/load_data/text.ipynb
- site/en/tutorials/load_data/tfrecord.ipynb
- site/en/tutorials/load_data/unicode.ipynb
- site/en/tutorials/quickstart/advanced.ipynb
- site/en/tutorials/quickstart/beginner.ipynb
- site/en/tutorials/reinforcement_learning/actor_critic.ipynb
- site/en/tutorials/structured_data/feature_columns.ipynb
- site/en/tutorials/structured_data/imbalanced_data.ipynb
- site/en/tutorials/structured_data/preprocessing_layers.ipynb
- site/en/tutorials/structured_data/time_series.ipynb
- site/en/tutorials/text/image_captioning.ipynb
- site/en/tutorials/text/nmt_with_attention.ipynb
- site/en/tutorials/text/text_classification_rnn.ipynb
- site/en/tutorials/text/text_generation.ipynb
- site/en/tutorials/text/transformer.ipynb
- site/en/tutorials/text/word_embeddings.ipynb
- tools/templates/notebook.ipynb
- tools/templates/subsite/g3doc/tutorials/notebook.ipynb
Format and style
Use the TensorFlow docs notebook tools to format for consistent source diffs and lint for style:$ python3 -m pip install -U --user git+https://github.com/tensorflow/docsIf commits are added to the pull request, synchronize your local branch:
$ python3 -m tensorflow_docs.tools.nbfmt notebook.ipynb
$ python3 -m tensorflow_docs.tools.nblint --arg=repo:tensorflow/docs notebook.ipynb
git pull origin test
Friendly ping @yashk2810
Merge conflict, please rebase