topaz
topaz copied to clipboard
pkg_resources.DistributionNotFound: The 'dataclasses' distribution was not found and is required by torch
Hi, I have installed the topaz the newest version 0.2.5. Because the GPU version is sm_83, I installed the pytorch==1.7.0=py3.7_cuda11.0.221_cudnn8.0.3_0. And then I installed topaz with conda install topaz.
However, when I run the command topaz in the terminal, the error follows,
Traceback (most recent call last):
File "/data/Apps//topaz_0.2.5python3/bin/topaz", line 6, in
Do you have any idea about this error? Thanks!
This looks like a problem with the python package system. Can you share the complete details of your conda environment (you can find this by running conda list
in your topaz environment)?
P.S. the topaz version on conda is 0.2.4. If you want the dev build of 0.2.5, you need to install from source.
Are there any updates on this issue? Did you figure out the problem @werhoog?
I am having this issue after fresh install with conda install topaz cudatoolkit=11.0 -c tbepler -c pytorch
.
conda list
says:
# Name Version Build Channel
_libgcc_mutex 0.1 main
_openmp_mutex 5.1 1_gnu
blas 1.0 mkl
bottleneck 1.3.4 py38hce1f21e_0
ca-certificates 2022.4.26 h06a4308_0
certifi 2022.5.18.1 py38h06a4308_0
cudatoolkit 11.0.3 h88f8997_10 conda-forge
dataclasses 0.8 pyh6d0b6a4_7
freetype 2.11.0 h70c0345_0
future 0.18.2 py38_1
giflib 5.2.1 h7b6447c_0
intel-openmp 2021.4.0 h06a4308_3561
joblib 1.1.0 pyhd3eb1b0_0
jpeg 9e h7f8727e_0
lcms2 2.12 h3be6417_0
ld_impl_linux-64 2.38 h1181459_1
libffi 3.3 he6710b0_2
libgcc-ng 11.2.0 h1234567_1
libgfortran-ng 7.5.0 ha8ba4b0_17
libgfortran4 7.5.0 ha8ba4b0_17
libgomp 11.2.0 h1234567_1
libpng 1.6.37 hbc83047_0
libstdcxx-ng 11.2.0 h1234567_1
libtiff 4.2.0 h2818925_1
libuv 1.40.0 h7b6447c_0
libwebp 1.2.2 h55f646e_0
libwebp-base 1.2.2 h7f8727e_0
lz4-c 1.9.3 h295c915_1
mkl-service 2.4.0 py38h7f8727e_0
mkl_fft 1.3.1 py38hd3c417c_0
mkl_random 1.2.2 py38h51133e4_0
ncurses 6.3 h7f8727e_2
ninja 1.10.2 h06a4308_5
ninja-base 1.10.2 hd09550d_5
numexpr 2.8.1 py38h6abb31d_0
numpy 1.22.3 py38he7a7128_0
numpy-base 1.22.3 py38hf524024_0
openssl 1.1.1o h7f8727e_0
packaging 21.3 pyhd3eb1b0_0
pandas 1.4.2 py38h295c915_0
pillow 9.0.1 py38h22f2fdc_0
pip 21.2.4 py38h06a4308_0
pyparsing 3.0.4 pyhd3eb1b0_0
python 3.8.13 h12debd9_0
python-dateutil 2.8.2 pyhd3eb1b0_0
pytorch 1.7.0 py3.8_cuda11.0.221_cudnn8.0.3_0 pytorch
pytz 2022.1 py38h06a4308_0
readline 8.1.2 h7f8727e_1
scikit-learn 1.0.2 py38h51133e4_1
scipy 1.7.3 py38hc147768_0
setuptools 61.2.0 py38h06a4308_0
six 1.16.0 pyhd3eb1b0_1
sqlite 3.38.3 hc218d9a_0
threadpoolctl 2.2.0 pyh0d69192_0
tk 8.6.12 h1ccaba5_0
topaz 0.2.5 py_0 tbepler
torchvision 0.8.1 py38_cu110 pytorch
typing_extensions 4.1.1 pyh06a4308_0
wheel 0.37.1 pyhd3eb1b0_0
xz 5.2.5 h7f8727e_1
zlib 1.2.12 h7f8727e_2
zstd 1.5.2 ha4553b6_0
For me with 1080Ti, conda install topaz cudatoolkit=10.0 -c tbepler -c pytorch
solved the issue, but this workaround is not usable for people with newer cards.