sleap
sleap copied to clipboard
A deep learning framework for multi-animal pose tracking.
|CI| |Coverage| |Documentation| |Downloads| |Conda Downloads| |Stable version| |Latest version|
.. |CI| image:: https://github.com/talmolab/sleap/workflows/CI/badge.svg?event=push&branch=develop :target: https://github.com/talmolab/sleap/actions?query=workflow:CI :alt: Continuous integration status
.. |Coverage| image:: https://codecov.io/gh/talmolab/sleap/branch/develop/graph/badge.svg?token=oBmTlGIQRn :target: https://codecov.io/gh/talmolab/sleap :alt: Coverage
.. |Documentation| image:: https://img.shields.io/github/workflow/status/talmolab/sleap/Build%20website?label=Documentation :target: https://sleap.ai :alt: Documentation
.. |Downloads| image:: https://static.pepy.tech/personalized-badge/sleap?period=total&units=international_system&left_color=grey&right_color=brightgreen&left_text=PyPI%20Downloads :target: https://pepy.tech/project/sleap :alt: Downloads
.. |Conda Downloads| image:: https://img.shields.io/conda/dn/sleap/sleap?label=Conda%20Downloads :target: https://anaconda.org/sleap/sleap :alt: Conda Downloads
.. |Stable version| image:: https://img.shields.io/github/v/release/talmolab/sleap?label=stable :target: https://github.com/talmolab/sleap/releases/ :alt: Stable version
.. |Latest version| image:: https://img.shields.io/github/v/release/talmolab/sleap?include_prereleases&label=latest :target: https://github.com/talmolab/sleap/releases/ :alt: Latest version
.. start-inclusion-marker-do-not-remove
Social LEAP Estimates Animal Poses (SLEAP)
.. image:: https://sleap.ai/docs/_static/sleap_movie.gif :width: 600px
SLEAP is an open source deep-learning based framework for multi-animal pose tracking. It can be used to track any type or number of animals and includes an advanced labeling/training GUI for active learning and proofreading.
Features
- Easy, one-line installation with support for all OSes
- Purpose-built GUI and human-in-the-loop workflow for rapidly labeling large datasets
- Single- and multi-animal pose estimation with top-down and bottom-up training strategies
- State-of-the-art pretrained and customizable neural network architectures that deliver accurate predictions with very few labels
- Fast training: 15 to 60 mins on a single GPU for a typical dataset
- Fast inference: up to 600+ FPS for batch, <10ms latency for realtime
- Support for remote training/inference workflow (for using SLEAP without GPUs)
- Flexible developer API for building integrated apps and customization
Get some SLEAP
SLEAP is installed as a Python package. We strongly recommend using Miniconda <https://https://docs.conda.io/en/latest/miniconda.html>
_ to install SLEAP in its own environment.
You can find the latest version of SLEAP in the Releases <https://github.com/talmolab/sleap/releases>
_ page.
Quick install
^^^^^^^^^^^^^
conda
(Windows/Linux/GPU):
.. code-block:: bash
conda create -y -n sleap -c sleap -c nvidia -c conda-forge sleap
pip
(any OS):
.. code-block:: bash
pip install sleap
See the docs for full installation instructions <https://sleap.ai/installation.html>
_.
Learn to SLEAP
-
Learn step-by-step:
Tutorial <https://sleap.ai/tutorials/tutorial.html>
_ -
Learn more advanced usage:
Guides <https://sleap.ai/guides/>
__ andNotebooks <https://sleap.ai/notebooks/>
__ -
Learn by watching:
MIT CBMM Tutorial <https://cbmm.mit.edu/video/decoding-animal-behavior-through-pose-tracking>
_ -
Learn by reading:
Paper (Pereira et al., Nature Methods, 2022) <https://www.nature.com/articles/s41592-022-01426-1>
__ andReview on behavioral quantification (Pereira et al., Nature Neuroscience, 2020) <https://rdcu.be/caH3H>
_ -
Learn from others:
Discussions on Github <https://github.com/talmolab/sleap/discussions>
_
References
SLEAP is the successor to the single-animal pose estimation software LEAP <https://github.com/talmo/leap>
_ (Pereira et al., Nature Methods, 2019 <https://www.nature.com/articles/s41592-018-0234-5>
_).
If you use SLEAP in your research, please cite:
T.D. Pereira, N. Tabris, A. Matsliah, D. M. Turner, J. Li, S. Ravindranath, E. S. Papadoyannis, E. Normand, D. S. Deutsch, Z. Y. Wang, G. C. McKenzie-Smith, C. C. Mitelut, M. D. Castro, J. D’Uva, M. Kislin, D. H. Sanes, S. D. Kocher, S. S-H, A. L. Falkner, J. W. Shaevitz, and M. Murthy. `Sleap: A deep learning system for multi-animal pose tracking <https://www.nature.com/articles/s41592-022-01426-1>`__. *Nature Methods*, 19(4), 2022
BibTeX:
.. code-block::
@ARTICLE{Pereira2022sleap, title={SLEAP: A deep learning system for multi-animal pose tracking}, author={Pereira, Talmo D and Tabris, Nathaniel and Matsliah, Arie and Turner, David M and Li, Junyu and Ravindranath, Shruthi and Papadoyannis, Eleni S and Normand, Edna and Deutsch, David S and Wang, Z. Yan and McKenzie-Smith, Grace C and Mitelut, Catalin C and Castro, Marielisa Diez and D'Uva, John and Kislin, Mikhail and Sanes, Dan H and Kocher, Sarah D and Samuel S-H and Falkner, Annegret L and Shaevitz, Joshua W and Murthy, Mala}, journal={Nature Methods}, volume={19}, number={4}, year={2022}, publisher={Nature Publishing Group} } }
Contact
Follow @talmop <https://twitter.com/talmop>
_ on Twitter for news and updates!
Technical issue with the software?
- Check the
Help page <https://sleap.ai/help.html>
_. - Ask the community via
discussions on Github <https://github.com/talmolab/sleap/discussions>
_. - Search the
issues on GitHub <https://github.com/talmolab/sleap/issues>
_ or open a new one.
General inquiries?
Reach out to [email protected]
.
.. _Contributors:
Contributors
- Talmo Pereira, Salk Institute for Biological Studies
- Liezl Maree, Salk Institute for Biological Studies
- Arlo Sheridan, Salk Institute for Biological Studies
- Arie Matsliah, Princeton Neuroscience Institute, Princeton University
- Nat Tabris, Princeton Neuroscience Institute, Princeton University
- David Turner, Research Computing and Princeton Neuroscience Institute, Princeton University
- Joshua Shaevitz, Physics and Lewis-Sigler Institute, Princeton University
- Mala Murthy, Princeton Neuroscience Institute, Princeton University
SLEAP was created in the Murthy <https://murthylab.princeton.edu>
_ and Shaevitz <https://shaevitzlab.princeton.edu>
_ labs at the Princeton Neuroscience Institute <https://pni.princeton.edu>
_ at Princeton University.
SLEAP is currently being developed and maintained in the Talmo Lab <https://talmolab.org>
_ at the Salk Institute for Biological Studies <https://salk.edu>
_, in collaboration with the Murthy and Shaevitz labs at Princeton University.
This work was made possible through our funding sources, including:
- NIH BRAIN Initiative R01 NS104899
- Princeton Innovation Accelerator Fund
License
SLEAP is released under a Clear BSD License <https://raw.githubusercontent.com/talmolab/sleap/main/LICENSE>
_ and is intended for research/academic use only. For commercial use, please contact: Laurie Tzodikov (Assistant Director, Office of Technology Licensing), Princeton University, 609-258-7256.
.. end-inclusion-marker-do-not-remove
Links
-
Documentation Homepage <https://sleap.ai>
_ -
Overview <https://sleap.ai/overview.html>
_ -
Installation <https://sleap.ai/installation.html>
_ -
Tutorial <https://sleap.ai/tutorials/tutorial.html>
_ -
Guides <https://sleap.ai/guides/index.html>
_ -
Notebooks <https://sleap.ai/notebooks/index.html>
_ -
Developer API <https://sleap.ai/api.html>
_ -
Help <https://sleap.ai/help.html>
_