PTF icon indicating copy to clipboard operation
PTF copied to clipboard

fit smpl+D from raw scans only

Open ddlau opened this issue 2 years ago • 3 comments

hello, I am appreciate about your excellent work, but something's remain unclear for me and i'm expecting responses: in this project, i see minimal shapes, smpl parameters and so on are used when evaluating, can this project fit smpl+D model from raw scans only? if yes, how? thank you!

ddlau avatar Sep 19 '22 09:09 ddlau

Hi, thanks for your interest in our work!

The optimization code does SMPL+D fitting at this line:

https://github.com/taconite/PTF/blob/a8789c9f752aea2944c2a75e04cc2aa21c7e4a00/smpl_registration/fit_SMPLD_PTFs.py#L498

So you can feed your raw scan to the optimization script and get SMPL+D from raw scans.

best, Shaofei

taconite avatar Sep 19 '22 10:09 taconite

您好,非常感谢回复和指导!有一些细节想请教一下: 目前我这边测试用的数据,仅有一个含15万个顶点和5万个面片的clothed的mesh;在调用optimize_offsets时这个mesh应该是用来初始化all_posed_cloth_meshes吧?那init_smpl_meshes该怎么办呢?可以用这个mesh算吗? 再次感谢!

ddlau avatar Sep 20 '22 02:09 ddlau

init_smpl_meshes其实就是前面fit SMPL步骤输出的mesh,它们的作用regularize你的SMPL+D优化过程:

https://github.com/taconite/PTF/blob/a8789c9f752aea2944c2a75e04cc2aa21c7e4a00/smpl_registration/fit_SMPLD_PTFs.py#L138

这里的laplacian loss表明,你优化过后的SMPL+D mesh (th_smpl_meshes)相对于你的初始SMPL mesh(init_smpl_meshes)的形变应当尽量小。

所以优化的完整流程应该是:1、先优化SMPL parameter,得到SMPL mesh;2、用第一步得到SMPL parameter和SMPL mesh作为初始化,再去优化SMPL+D的parameter。第一步的SMPL优化很关键,如果不准的话,第二步的结果也不会好

taconite avatar Sep 25 '22 11:09 taconite