eznlp
eznlp copied to clipboard
Easy Natural Language Processing
Easy Natural Language Processing
Overparameterized neural networks are lazy (Chizat et al., 2019), so we design structures and objectives that can be easily optimized.
eznlp is a PyTorch-based package for neural natural language processing, currently supporting the following tasks:
- Text Classification (Experimental Results)
- Named Entity Recognition (Experimental Results)
- Relation Extraction (Experimental Results)
- Attribute Extraction
- Machine Translation
- Image Captioning
This repository also maintains the code of our papers:
- Check this link for "Deep Span Representations for Named Entity Recognition" accepted to Findings of ACL 2023.
- Check this link for "Boundary Smoothing for Named Entity Recognition" in ACL 2022.
- Check the annotation scheme and HwaMei-500 dataset described in "A Unified Framework of Medical Information Annotation and Extraction for Chinese Clinical Text" on Artificial Intelligence in Medicine.
Installation
Create an environment
$ conda create --name eznlp python=3.8
$ conda activate eznlp
Install dependencies
$ conda install numpy=1.18.5 pandas=1.0.5 xlrd=1.2.0 matplotlib=3.2.2
$ conda install pytorch=1.7.1 torchvision=0.8.2 torchtext=0.8.1 {cpuonly|cudatoolkit=10.2|cudatoolkit=11.0} -c pytorch
$ pip install -r requirements.txt
Install eznlp
- From source (recommended)
$ python setup.py sdist
$ pip install dist/eznlp-<version>.tar.gz --no-deps
- With
pip
$ pip install eznlp --no-deps
Running the Code
Text classification
$ python scripts/text_classification.py --dataset <dataset> [options]
Entity recognition
$ python scripts/entity_recognition.py --dataset <dataset> [options]
Relation extraction
$ python scripts/relation_extraction.py --dataset <dataset> [options]
Attribute extraction
$ python scripts/attribute_extraction.py --dataset <dataset> [options]
Citation
If you find our code useful, please cite the following papers:
@inproceedings{zhu2023deep,
title={Deep Span Representations for Named Entity Recognition},
author={Zhu, Enwei and Liu, Yiyang and Li, Jinpeng},
booktitle={Findings of the Association for Computational Linguistics: ACL 2023},
month={jul},
year={2023},
address={Toronto, Canada},
publisher={Association for Computational Linguistics},
url={https://aclanthology.org/2023.findings-acl.672},
doi={10.18653/v1/2023.findings-acl.672},
pages={10565--10582}
}
@inproceedings{zhu2022boundary,
title={Boundary Smoothing for Named Entity Recognition},
author={Zhu, Enwei and Li, Jinpeng},
booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
month={may},
year={2022},
address={Dublin, Ireland},
publisher={Association for Computational Linguistics},
url={https://aclanthology.org/2022.acl-long.490},
doi={10.18653/v1/2022.acl-long.490},
pages={7096--7108}
}
@article{zhu2023framework,
title={A unified framework of medical information annotation and extraction for {C}hinese clinical text},
author={Zhu, Enwei and Sheng, Qilin and Yang, Huanwan and Liu, Yiyang and Cai, Ting and Li, Jinpeng},
journal={Artificial Intelligence in Medicine},
volume={142},
pages={102573},
year={2023},
publisher={Elsevier}
}
References
- Chizat, L., Oyallon, E., and Bach, F. On lazy training in differentiable programming. In NeurIPS 2019.