CapsNet_Mxnet
CapsNet_Mxnet copied to clipboard
producing nan's starting from epoch 7?
I tried a couple of times. Epoch number may vary but it quickly runs into [nan nan nan ...]
can@r710:~/CapNet/CapsNet_Mxnet$ python3.6 CapsNet.py --train "True"
Namespace(batch_size=16, epochs=1, train=True)
/usr/local/lib/python3.6/site-packages/mxnet-1.0.0-py3.6.egg/mxnet/gluon/data/vision.py:118: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
label = np.fromstring(fin.read(), dtype=np.uint8).astype(np.int32)
/usr/local/lib/python3.6/site-packages/mxnet-1.0.0-py3.6.egg/mxnet/gluon/data/vision.py:122: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
data = np.fromstring(fin.read(), dtype=np.uint8)
====================================net====================================
Sequential(
(0): Conv2D(None -> 256, kernel_size=(9, 9), stride=(1, 1))
(1): PrimaryConv(
(dim_0): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_1): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_2): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_3): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_4): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_5): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_6): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_7): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_8): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_9): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_10): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_11): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_12): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_13): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_14): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_15): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_16): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_17): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_18): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_19): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_20): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_21): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_22): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_23): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_24): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_25): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_26): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_27): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_28): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_29): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_30): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
(dim_31): Conv2D(None -> 8, kernel_size=(9, 9), stride=(2, 2))
)
(2): DigitCaps(
)
(3): Length(
)
)
====================================train====================================
0%| | 0/3750 [00:00<?, ?b/s]
[ 0.00053215 -0.00086554 -0.00070903 -0.00042224 -0.00170875 -0.00171388
0.00125246 0.00120847 0.00166339 0.0001391 0.00141779 0.0007026
-0.00180562 0.00125801 0.00105987 -0.00183327]
<NDArray 16 @cpu(0)>
0%| | 1/3750 [00:05<5:14:01, 5.03s/b]
[ 0.00437646 0.00061251 -0.0017054 -0.00913203 -0.00747492 -0.00985935
0.00951486 -0.00505854 0.00964234 0.00774467 -0.00641411 0.00596963
-0.00305548 -0.00558549 -0.00095856 0.00287683]
<NDArray 16 @cpu(0)>
0%| | 2/3750 [00:09<4:47:08, 4.60s/b]
[ 0.00695158 0.00160247 -0.00237272 -0.01496771 -0.01133777 -0.01531678
0.01505066 -0.00925702 0.01498816 0.01284024 -0.01166136 0.00949801
-0.00389259 -0.01017031 -0.00231048 0.00603203]
<NDArray 16 @cpu(0)>
0%| | 3/3750 [00:13<4:38:14, 4.46s/b]
[ 0.00894154 0.00236739 -0.00288832 -0.01947842 -0.01432313 -0.019535
0.01932948 -0.01250185 0.01912007 0.01677865 -0.01571707 0.01222481
-0.0045394 -0.01371383 -0.0033551 0.00847037]
<NDArray 16 @cpu(0)>
0%| | 4/3750 [00:17<4:33:27, 4.38s/b]
[ 0.01057109 0.00299369 -0.00331049 -0.02317308 -0.01676804 -0.02298999
0.02283413 -0.01515932 0.02250434 0.02000437 -0.0190389 0.01445791
-0.00506899 -0.01661601 -0.00421045 0.01046718]
<NDArray 16 @cpu(0)>
0%| | 5/3750 [00:21<4:30:31, 4.33s/b]
[ 0.01194801 0.00352284 -0.00366715 -0.02629571 -0.01883411 -0.02590997
0.02579609 -0.01740507 0.02536453 0.02273052 -0.02184629 0.01634494
-0.00551642 -0.01906862 -0.00493313 0.01215449]
<NDArray 16 @cpu(0)>
0%| | 6/3750 [00:25<4:28:52, 4.31s/b]
[ 0.01313437 0.00397869 -0.00397441 -0.02898684 -0.02061442 -0.02842639
0.0283487 -0.01934025 0.0278294 0.02507982 -0.02426564 0.01797093
-0.00590188 -0.02118212 -0.00555573 0.01360835]
<NDArray 16 @cpu(0)>
0%| | 7/3750 [00:30<4:27:22, 4.29s/b]
[nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan]
<NDArray 16 @cpu(0)>
0%| | 8/3750 [00:34<4:26:11, 4.27s/b]
[nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan]
<NDArray 16 @cpu(0)>
0%| | 9/3750 [00:38<4:25:14, 4.25s/b]
[nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan]
<NDArray 16 @cpu(0)>
0%| | 10/3750 [00:42<4:24:30, 4.24s/b]
[nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan]
<NDArray 16 @cpu(0)>
0%| | 11/3750 [00:46<4:23:50, 4.23s/b]
[nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan]
<NDArray 16 @cpu(0)>
0%| | 12/3750 [00:50<4:23:16, 4.23s/b]
[nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan]
<NDArray 16 @cpu(0)>
0%| | 13/3750 [00:54<4:22:47, 4.22s/b]