sunjunlishi
sunjunlishi
@honghuCode 真棒,这个 效果真是不错;
Where does your model come from? Does it have a corresponding Caffe network structure?
我用了 20多万张图片;为了适应 输入框,训练的时候输入框在标定人脸框的上下左右移动后截取; 效果还是一般
应该依赖的是 opencv2410; 仅仅支持 vs2015 x64 release;其他需要自己搞定; opencv2.4.10版本的体积小,方便继承。
File "./src/model/SADRNv2.py", line 98, in forward x = self.block1(x) File "/data/Downloads/CondaAg/lib/python3.6/site-packages/torch/nn/modules/module.py", line 889, in _call _impl result = self.forward(*input, **kwargs) File "./src/model/modules.py", line 540, in forward out += identity RuntimeError:...
File "./src/model/SADRNv2.py", line 98, in forward x = self.block1(x) File "/data/Downloads/CondaAg/lib/python3.6/site-packages/torch/nn/modules/module.py", line 889, in _call _impl result = self.forward(*input, **kwargs) File "./src/model/modules.py", line 540, in forward out += identity RuntimeError:...
奥,原来数据格式是那样的呀
首先所有的格式统一;三个回归用的东西 标签类型,landmark,人脸框; 下面有个分解数据曾,这样每类数据对应一个回归soft. 至于讲解格式没什么了,负样本要填写0,因为不起作用。还有训练用的ldb,所以这些东西要转换下。 这个东西不是真正用的东西。具体看作者的python生成样本代码。
实话,本人没训练。但是你猜测,都已经猜测到那些内容了。 每种样本就是 那 四个属性呀。标签值,landmark,框,头像路径。
Whether you provide models or not, we have to train ourselves, thank you for all your code. If trained model, it would be better.