Neural-Kernel-Network
Neural-Kernel-Network copied to clipboard
Code for "Differentiable Compositional Kernel Learning for Gaussian Processes" https://arxiv.org/abs/1806.04326
Neural Kernel Network
This code is jointly contributed by Shengyang Sun, Guodong Zhang, Chaoqi Wang and Wenyuan Zeng
Introduction
Code for "Differentiable Compositional Kernel Learning for Gaussian Processes" (https://arxiv.org/abs/1806.04326)
Dependencies
This project runs with Python 3.6. Before running the code, you have to install
- Tensorflow
- GPflow-Slim
Experiments
Below we shows some examples to run the experiments. We also provide experiment figures and logging files in results folder, as a reference.
Time Series
python exp/time-series.py --name airline --kern nkn
Regression
python exp/regression.py --data energy --split uci_woval --kern nkn
python exp/regression.py --data energy --split uci_woval_pca --kern nkn
Bayesian Optimization
python exp/bayes-opt.py --name sty --kern nkn --run 0
Texture Extrapolation
python exp/texture.py --data pave --kern nkn
Citation
To cite this work, please use
@article{sun2018differentiable,
title={Differentiable Compositional Kernel Learning for Gaussian Processes},
author={Sun, Shengyang and Zhang, Guodong and Wang, Chaoqi and Zeng, Wenyuan and Li, Jiaman and Grosse, Roger},
journal={arXiv preprint arXiv:1806.04326},
year={2018}
}