ivreghdfe
ivreghdfe copied to clipboard
"Warning: *variance matrix is nonsymmetric or highly singular" with reghdfe
I would like to absorb time FE in my regression as well as include a categorical variable among my explanatory variables (for age brackets).
When including age bracket FE as a regressor and absorbing time FE, I get the following message: "Warning: *variance matrix is nonsymmetric or highly singular" and SE are not estimated.
However, when running the exact same model while absorbing both time FE and age bracket FE I get no warning and all SE are estimated. Is it same to use these results?
PS: I am specifying robust standard errors in both estimations mentioned above. The same happens when I specify clustered standard errors for both estimations. This issue only does not happen when my standard errors are neither clustered, nor robust.
. ********************* I get the warning message when I estimate coefficients for age bracket and absorb time FE
. reghdfe avg_peer_cost iv_age iv_fem iv_uni pat_fem pat_age i.age_int, absorb(ym) vce(robust)
(MWFE estimator converged in 1 iterations)
Warning: variance matrix is nonsymmetric or highly singular
HDFE Linear regression Number of obs = 7,148,998
Absorbing 1 HDFE group F( 21,7148887) = 10378.63
Prob > F = 0.0000
R-squared = 0.0330
Adj R-squared = 0.0330
Within R-sq. = 0.0292
Root MSE = 2096.0537
----------------------------------------------------------------------------------
| Robust
avg_peer_cost | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----------------+----------------------------------------------------------------
iv_age | -31.59436 . . . . .
iv_fem | 411.207 . . . . .
iv_uni | 738.8013 . . . . .
pat_fem | -386.0751 . . . . .
pat_age | 10.79922 . . . . .
|
age_int |
20 to 25 years | -1180.342 . . . . .
25 to 30 years | -1009.705 . . . . .
30 to 35 years | -795.4957 . . . . .
35 to 40 years | -708.4765 . . . . .
40 to 45 years | -698.3601 . . . . .
45 to 50 years | -755.683 . . . . .
50 to 55 years | -831.5416 . . . . .
55 to 60 years | -909.2266 . . . . .
60 to 65 years | -979.1657 . . . . .
65 to 70 years | -935.7501 . . . . .
70 to 75 years | -788.7044 . . . . .
75 to 80 years | -607.2163 . . . . .
80 to 85 years | -902.8926 . . . . .
85 to 90 years | -975.3231 . . . . .
90 to 95 years | -864.3475 . . . . .
95 to 100 years | -177.4297 . . . . .
|
_cons | 3718.518 . . . . .
----------------------------------------------------------------------------------
Absorbed degrees of freedom:
-----------------------------------------------------+
Absorbed FE | Categories - Redundant = Num. Coefs |
-------------+---------------------------------------|
ym | 90 0 90 |
-----------------------------------------------------+
.
.********************* I don't get the warning any longer when I absorb the coefficients of age brackets together with time FE
. reghdfe avg_peer_cost iv_age iv_fem iv_uni pat_fem pat_age, absorb(ym age_int) vce(robust)
(MWFE estimator converged in 4 iterations)
HDFE Linear regression Number of obs = 7,148,998
Absorbing 2 HDFE groups F( 5,7148887) = 39389.47
Prob > F = 0.0000
R-squared = 0.0330
Adj R-squared = 0.0330
Within R-sq. = 0.0260
Root MSE = 2096.0537
------------------------------------------------------------------------------
| Robust
avg_peer_c~t | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
iv_age | -31.59436 .2484534 -127.16 0.000 -32.08132 -31.1074
iv_fem | 411.207 8.263385 49.76 0.000 395.011 427.4029
iv_uni | 738.8013 4.091539 180.57 0.000 730.782 746.8205
pat_fem | -386.0751 2.196373 -175.78 0.000 -390.3799 -381.7703
pat_age | 10.79922 .0335185 322.19 0.000 10.73353 10.86492
_cons | 2902.447 12.48775 232.42 0.000 2877.971 2926.922
------------------------------------------------------------------------------
Absorbed degrees of freedom:
-----------------------------------------------------+
Absorbed FE | Categories - Redundant = Num. Coefs |
-------------+---------------------------------------|
ym | 90 0 90 |
age_int | 17 1 16 |
-----------------------------------------------------+
In my case, I used the second regression and I still get the same result as of first. Could you please suggest me on what should I do? Thanks.