SDMetrics
SDMetrics copied to clipboard
Gh stronger detection classifiers
Add Random Forest and Gradient Boosting from sklearn to the single table detection tests. Being able to fool these classifiers would be a great improvement for generative models.
Hi, I changed the class names and checked the tests.
Codecov Report
Merging #120 (cf22966) into master (122f42e) will increase coverage by
0.18%. The diff coverage is93.10%.
@@ Coverage Diff @@
## master #120 +/- ##
==========================================
+ Coverage 50.84% 51.03% +0.18%
==========================================
Files 51 51
Lines 1530 1540 +10
==========================================
+ Hits 778 786 +8
- Misses 752 754 +2
| Impacted Files | Coverage Δ | |
|---|---|---|
| sdmetrics/__init__.py | 39.13% <ø> (ø) |
|
| ...dmetrics/column_pairs/statistical/kl_divergence.py | 61.53% <ø> (ø) |
|
| sdmetrics/errors.py | 100.00% <ø> (ø) |
|
| sdmetrics/single_column/statistical/cstest.py | 68.42% <ø> (ø) |
|
| sdmetrics/single_column/statistical/kstest.py | 72.22% <ø> (ø) |
|
| sdmetrics/single_table/__init__.py | 100.00% <ø> (ø) |
|
| sdmetrics/single_table/base.py | 35.71% <ø> (ø) |
|
| sdmetrics/single_table/privacy/loss.py | 39.13% <ø> (ø) |
|
| sdmetrics/timeseries/ml_scorers.py | 21.56% <ø> (ø) |
|
| sdmetrics/single_table/detection/sklearn.py | 78.37% <83.33%> (+1.45%) |
:arrow_up: |
| ... and 12 more |
Continue to review full report at Codecov.
Legend - Click here to learn more
Δ = absolute <relative> (impact),ø = not affected,? = missing dataPowered by Codecov. Last update eacec8a...cf22966. Read the comment docs.
@TanguyUrvoy make lint returns the following errors:
Run invoke lint
No broken requirements found.
ERROR: /home/runner/work/SDMetrics/SDMetrics/sdmetrics/single_table/__init__.py Imports are incorrectly sorted.
ERROR: /home/runner/work/SDMetrics/SDMetrics/sdmetrics/single_table/base.py Imports are incorrectly sorted.
ERROR: /home/runner/work/SDMetrics/SDMetrics/sdmetrics/single_table/detection/sklearn.py Imports are incorrectly sorted.
ERROR: /home/runner/work/SDMetrics/SDMetrics/sdmetrics/single_table/detection/__init__.py Imports are incorrectly sorted.
ERROR: /home/runner/work/SDMetrics/SDMetrics/tests/integration/single_table/test_single_table.py Imports are incorrectly sorted.
Error: Process completed with exit code 1.
You can run make fix-lint to correctly sort the imports, and make lint to verify that the imports are sorted correctly.
Thanks, It seems OK now 😊
De : Katharine Xiao @.> Envoyé : lundi 16 mai 2022 17:50 À : sdv-dev/SDMetrics @.> Cc : URVOY Tanguy INNOV/IT-S @.>; Mention @.> Objet : Re: [sdv-dev/SDMetrics] Gh stronger detection classifiers (PR #120)
@TanguyUrvoyhttps://github.com/TanguyUrvoy make lint returns the following errors:
Run invoke lint
No broken requirements found.
ERROR: /home/runner/work/SDMetrics/SDMetrics/sdmetrics/single_table/init.py Imports are incorrectly sorted.
ERROR: /home/runner/work/SDMetrics/SDMetrics/sdmetrics/single_table/base.py Imports are incorrectly sorted.
ERROR: /home/runner/work/SDMetrics/SDMetrics/sdmetrics/single_table/detection/sklearn.py Imports are incorrectly sorted.
ERROR: /home/runner/work/SDMetrics/SDMetrics/sdmetrics/single_table/detection/init.py Imports are incorrectly sorted.
ERROR: /home/runner/work/SDMetrics/SDMetrics/tests/integration/single_table/test_single_table.py Imports are incorrectly sorted.
Error: Process completed with exit code 1.
You can run make fix-lint to correctly sort the imports, and make lint to verify that the imports are sorted correctly.
— Reply to this email directly, view it on GitHubhttps://github.com/sdv-dev/SDMetrics/pull/120#issuecomment-1127841417, or unsubscribehttps://github.com/notifications/unsubscribe-auth/ADEJ2N2LBW3XWDYQ7PIFUCTVKJVC3ANCNFSM5QMHGPLA. You are receiving this because you were mentioned.Message ID: @.@.>>
Orange Restricted
Ce message et ses pieces jointes peuvent contenir des informations confidentielles ou privilegiees et ne doivent donc pas etre diffuses, exploites ou copies sans autorisation. Si vous avez recu ce message par erreur, veuillez le signaler a l'expediteur et le detruire ainsi que les pieces jointes. Les messages electroniques etant susceptibles d'alteration, Orange decline toute responsabilite si ce message a ete altere, deforme ou falsifie. Merci.
This message and its attachments may contain confidential or privileged information that may be protected by law; they should not be distributed, used or copied without authorisation. If you have received this email in error, please notify the sender and delete this message and its attachments. As emails may be altered, Orange is not liable for messages that have been modified, changed or falsified. Thank you.
@TanguyUrvoy We're still seeing lint issues. The lint fixes should only be on the files that you are modifying, because the other files already pass the lint. Could you make sure you're installing the correct dependencies by running make install-develop in a clean environment?
I do not understand why it fails on parts like timeseries which are not concerend by my changes.
Or maybe it was the import reordering with make fix-lint which induced these errors.
Tanguy
De : URVOY Tanguy INNOV/IT-S Envoyé : vendredi 20 mai 2022 10:19:46 À : sdv-dev/SDMetrics; sdv-dev/SDMetrics Cc : Mention Objet : RE: [sdv-dev/SDMetrics] Gh stronger detection classifiers (PR #120)
Thanks for your patience 😊
I hope this version will succeed though the tests ...
-- Tanguy URVOY IT-S/DIESE/DIA/PROF +33 786 848 899
De : Katharine Xiao @.***> Envoyé : jeudi 19 mai 2022 19:15:16 À : sdv-dev/SDMetrics Cc : URVOY Tanguy INNOV/IT-S; Mention Objet : Re: [sdv-dev/SDMetrics] Gh stronger detection classifiers (PR #120)
@TanguyUrvoyhttps://github.com/TanguyUrvoy We're still seeing lint issues. The lint fixes should only be on the files that you are modifying, because the other files already pass the lint. Could you make sure you're installing the correct dependencies by running make install-develop in a clean environment?
— Reply to this email directly, view it on GitHubhttps://github.com/sdv-dev/SDMetrics/pull/120#issuecomment-1131975611, or unsubscribehttps://github.com/notifications/unsubscribe-auth/ADEJ2N6AKSANJQZLZ2ISLZLVKZZKJANCNFSM5QMHGPLA. You are receiving this because you were mentioned.Message ID: @.***>
Ce message et ses pieces jointes peuvent contenir des informations confidentielles ou privilegiees et ne doivent donc pas etre diffuses, exploites ou copies sans autorisation. Si vous avez recu ce message par erreur, veuillez le signaler a l'expediteur et le detruire ainsi que les pieces jointes. Les messages electroniques etant susceptibles d'alteration, Orange decline toute responsabilite si ce message a ete altere, deforme ou falsifie. Merci.
This message and its attachments may contain confidential or privileged information that may be protected by law; they should not be distributed, used or copied without authorisation. If you have received this email in error, please notify the sender and delete this message and its attachments. As emails may be altered, Orange is not liable for messages that have been modified, changed or falsified. Thank you.