seurat
seurat copied to clipboard
RunICA error - DimReduc” object: rownames must be present in 'cell.embeddings
I do encounter the following error after importing 10X spatial h5 object when performing the RunICA function:
Error in validObject(.Object) : invalid class “DimReduc” object: rownames must be present in 'cell.embeddings'
Data was read using the Load10X_Spatial function. The SeuratDisk library was installed and loaded as well as the SeuratData::UpdateSeuratObject did not resolve the error, thus I exclude issues do to saving/loading the file from different Seurat versions.
Debugging the function get to the point where CreateDimReducObject is called, so it really seems that due to a change in conformity checks causes this error.
while the colnames are set in RunICA.default for both cell.embeddings and feature.loadings the rownames are not.
R version 4.1.3 (2022-03-10)
Platform: x86_64-apple-darwin13.4.0 (64-bit)
Running under: macOS 14.5
Matrix products: default
LAPACK: /Users/spies.daniel/opt/miniconda3/lib/libopenblasp-r0.3.27.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] dplyr_1.1.4 SeuratDisk_0.0.0.9021 ggplot2_3.5.1 patchwork_1.2.0 SeuratData_0.2.2.9001 Seurat_5.0.1 SeuratObject_5.0.1 sp_1.5-1 BiocManager_1.30.23
loaded via a namespace (and not attached):
[1] Rtsne_0.16 colorspace_2.0-3 deldir_1.0-6 ggridges_0.5.6 XVector_0.34.0 GenomicRanges_1.46.1 RcppHNSW_0.4.1 spatstat.data_3.0-0
[9] farver_2.1.1 leiden_0.4.3.1 listenv_0.9.1 bit64_4.0.5 ggrepel_0.9.5 RSpectra_0.16-1 fansi_1.0.3 sparseMatrixStats_1.6.0
[17] codetools_0.2-20 splines_4.1.3 polyclip_1.10-4 pkgload_1.3.4 spam_2.9-1 jsonlite_1.8.3 ica_1.0-3 cluster_2.1.4
[25] png_0.1-7 uwot_0.1.14 shiny_1.8.1.1 sctransform_0.4.1 spatstat.sparse_3.0-0 compiler_4.1.3 httr_1.4.7 Matrix_1.6-4
[33] fastmap_1.1.1 lazyeval_0.2.2 cli_3.6.3 later_1.3.0 htmltools_0.5.8.1 tools_4.1.3 igraph_2.0.3 dotCall64_1.0-2
[41] GenomeInfoDbData_1.2.7 gtable_0.3.5 glue_1.6.2 RANN_2.6.1 reshape2_1.4.4 rappdirs_0.3.3 Rcpp_1.0.9 Biobase_2.54.0
[49] scattermore_1.2 vctrs_0.6.5 spatstat.explore_3.0-5 nlme_3.1-160 progressr_0.14.0 DelayedMatrixStats_1.16.0 lmtest_0.9-40 spatstat.random_3.0-1
[57] stringr_1.5.1 globals_0.16.3 mime_0.12 miniUI_0.1.1.1 lifecycle_1.0.4 irlba_2.3.5.1 goftest_1.2-3 future_1.29.0
[65] zlibbioc_1.40.0 MASS_7.3-58.1 zoo_1.8-11 scales_1.3.0 MatrixGenerics_1.6.0 promises_1.2.0.1 spatstat.utils_3.0-1 SummarizedExperiment_1.24.0
[73] parallel_4.1.3 RColorBrewer_1.1-3 reticulate_1.26 pbapply_1.7-2 gridExtra_2.3 stringi_1.7.8 S4Vectors_0.32.4 fastDummies_1.7.3
[81] BiocGenerics_0.40.0 GenomeInfoDb_1.30.1 bitops_1.0-7 rlang_1.1.4 pkgconfig_2.0.3 matrixStats_0.63.0 glmGamPoi_1.6.0 lattice_0.20-45
[89] ROCR_1.0-11 purrr_1.0.2 tensor_1.5 labeling_0.4.3 htmlwidgets_1.6.4 bit_4.0.5 cowplot_1.1.3 tidyselect_1.2.1
[97] parallelly_1.32.1 RcppAnnoy_0.0.20 plyr_1.8.8 magrittr_2.0.3 R6_2.5.1 IRanges_2.28.0 generics_0.1.3 DelayedArray_0.20.0
[105] DBI_1.2.3 pillar_1.9.0 withr_3.0.0 fitdistrplus_1.1-11 RCurl_1.98-1.9 survival_3.4-0 abind_1.4-5 tibble_3.2.1
[113] future.apply_1.11.2 hdf5r_1.3.7 crayon_1.5.3 KernSmooth_2.23-20 utf8_1.2.2 spatstat.geom_3.0-3 plotly_4.10.4 grid_4.1.3
[121] data.table_1.14.6 digest_0.6.30 xtable_1.8-4 tidyr_1.3.1 httpuv_1.6.6 stats4_4.1.3 munsell_0.5.1 viridisLite_0.4.2 ```