GOLD
GOLD copied to clipboard
Mining GOLD Samples for Conditional GANs (NeurIPS 2019)
Mining GOLD Samples for Conditional GANs
PyTorch implementation of "Mining GOLD Samples for Conditional GANs" (NeurIPS 2019).
Run experiments
Run example re-weighting experiments
python main.py --name reweight_base --dataset mnist --epochs 20 --mode acgan_semi
python main.py --name reweight_gold --dataset mnist --epochs 20 --mode acgan_semi_gold
Run rejection sampling experiments
See rejection.ipynb
Run active learning experiments
python main.py --name active_base --dataset mnist --init_size 10 --per_size 2 --max_size 18 --mode acgan_semi --lambda_C_fake 0.01 --query_type random
python main.py --name active_gold --dataset mnist --init_size 10 --per_size 2 --max_size 18 --mode acgan_semi --lambda_C_fake 0.01 --query_type gold
Citation
If you use this code for your research, please cite our papers.
@inproceedings{
mo2019mining,
title={Mining GOLD Samples for Conditional GANs},
author={Mo, Sangwoo and Kim, Chiheon and Kim, Sungwoong and Cho, Minsu and Shin, Jinwoo},
booktitle={Advances in Neural Information Processing Systems},
year={2019},
}