EdurekaPythonDataScienceCertification2019 icon indicating copy to clipboard operation
EdurekaPythonDataScienceCertification2019 copied to clipboard

Code from Edureka Python Data Science Summer 2019

Edureka Python Data Science Certification 2019

Following are the topics covered in this course:

Basic Python

  • Types of variables
  • Loops in Python
  • Collection Datatypes
    • List
    • Tuples
    • Sets
    • Dictionaries
  • Exceptional Handling
  • OOPs concept
  • User defined functions
  • Numpy
    • Arrays
    • Matrix
  • Pandas
    • Dataframes

Data PreProcessing

  • Missing value Treatment
  • Outlier Treatment
  • Feature Scaling
  • Train and Test Split

Data Visulaization

  • Matplot Library
  • Seaborn Library

Algorithms

Supervised Learning
  • Regression
    • Simple Linear Regression
    • Multiple Linear Regression
    • Decision Tree
    • Random Forest
  • Classification
    • Logistic Regression
    • K-nearest Neighbour
    • Naive Bayes
    • Support Vector Machine
    • Decision Tree
    • Random Forest
Unsupervised Learning
  • Clustering
    • K-means Clustering
    • Hierarchical Clustering -Association Rule
    • Apriori Association
  • Dimensionality Reduction
  • Reinforcement Learning
  • Time Series
    • ARIMA
Model Selection and Boosting
  • K-Fold
  • XGBoost