ERROR in less than 3 samples (basic_analysis_steps_MISC_SACL.knit.md). ERROR: get_DE_info_sampleAgnostic
contrasts_oi = c("'P-(A+B+C+D+T)/5','A-(P+B+C+D+T)/5','B-(A+P+C+D+T)/5','C-(A+B+P+D+T)/5','D-(A+B+C+P+T)/5','T-(A+B+C+D+P)/5'")
contrast_tbl = tibble(contrast =
c("P-(A+B+C+D+T)/5","A-(P+B+C+D+T)/5", "B-(A+P+C+D+T)/5","C-(A+B+P+D+T)/5","D-(A+B+C+P+T)/5","T-(A+B+C+D+P)/5"),
group = c("P","A","B","C","D","T"))
senders_oi = SummarizedExperiment::colData(sce)[,celltype_id] %>% unique()
receivers_oi = SummarizedExperiment::colData(sce)[,celltype_id] %>% unique()
sce = sce[, SummarizedExperiment::colData(sce)[,celltype_id] %in%
c(senders_oi, receivers_oi)
]
conditions_keep =c("P","A","B","C","D","T")
sce = sce[, SummarizedExperiment::colData(sce)[,group_id] %in%
conditions_keep
]
DE_info = get_DE_info_sampleAgnostic(
sce = sce,
group_id = group_id, celltype_id = celltype_id,
contrasts_oi = contrasts_oi,
expressed_df = frq_list$expressed_df,
min_cells = min_cells,
contrast_tbl = contrast_tbl)
bug information: Error in assign(".effective_grid", effective_grid, envir = envir) : 'envir' Incorrect parameters
but it has something wrong when i run above code , i don't konw which step is wrong.can you help me to solve it issue:
The previous codes can all run normally, but an error occurs when calculating differentially expressed genes (get_DE_info_sampleAgnostic).
The detail information : sce: class: SingleCellExperiment dim: 15611 200474 metadata(0): assays(2): counts logcounts rownames(15611): A4GALT AAAS ... ZZEF1 ZZZ3 rowData names(0): colnames(200474): AAACCCAAGAGTGTGC-1_1 AAACCCAAGCACCAGA-1_1 ... TTTGTTGTCCTCTGCA-1_17 TTTGTTGTCGTTCTAT-1_17 colData names(16): orig.ident nCount_RNA ... cell ident reducedDimNames(1): PCA.FULL mainExpName: RNA altExpNames(0):
sample_id = "orig.ident"
group_id = "time" table(sce$time) A B C D P T 32108 29129 38452 33829 33313 33643
celltype_id = "cell" table(sce$cell) CEC LEC AT1 AT2 BASEL CIL GC SC TC AM B BPLA CD4 CD8 DC 6428 545 18701 101362 1873 5578 0 3958 1085 7714 3089 1610 9690 4268 0 MAST MON NEUT FIB MES SMC 848 14810 10777 2200 1303 4635
covariates = NA batches = NA
frq_list$expressed_df
A tibble: 477,128 × 3
Groups: gene [25,112]
celltype gene expressed
1 AM A1BG FALSE
2 AT1 A1BG FALSE
3 AT2 A1BG FALSE
4 B A1BG FALSE
5 BASEL A1BG FALSE
6 BPLA A1BG FALSE
7 CD4 A1BG FALSE
8 CD8 A1BG FALSE
9 CEC A1BG FALSE
10 CIL A1BG FALSE
ℹ 477,118 more rows
ℹ Use print(n = ...) to see more rows
Hi @tian6067
as a test: can you check whether running the DE analysis on your data works if you would only compare 2 conditions?
eg
contrasts_oi = c("'P-A','A-P'"
Hi @tian6067, any update on this?
Hi @tian6067 您好 @tian6067
as a test: can you check whether running the DE analysis on your data works if you would only compare 2 conditions?作为测试:如果您只比较 2 个条件,您能否检查对数据运行 DE 分析是否有效?
eg 例如:
contrasts_oi = c("'P-A','A-P'"eg 例如:contrasts_oi = c("'P-A','A-P'"
thank you for your answer, but it can not running for this test contrasts_oi = c("'P-A','A-P'" eg 例如: contrasts_oi = c("'P-A','A-P'".