Add Integer#ceildiv
ticket: https://bugs.ruby-lang.org/issues/18809
I have needed to implement "rounding up division" several times.
("rounding up division" means getting a quotient of division which is rounded up to the nearest integer.)
Typically, this is implemented as follows:
# notice that b > 0 is assumed
def rounding_up_division(a, b)
(a + b - 1) / b
end
But for me, this is difficult to write without careful consideration. Every time I implement this, I need to think for a few minutes on paper.
So I propose to add a new method Numeric#ceildiv.
Typical examples where this is necessary are counting groups and pagination.
e.g. There are 123 items. If you display 10 items on each page, how many pages are there?
123.ceildiv(10) # => 13
We can find several examples of this division also in Ruby's source code. (Try grep -r -E -e '([^ ]+) *- *1\) */ *\1' .)
./internal.h:#define roomof(x, y) (((x) + (y) - 1) / (y))
./array.c: len = (len + ustep - 1) / ustep;
./include/ruby/internal/memory.h: const size_t cnt = (total_size + sizeof(VALUE) - 1) / sizeof(VALUE);
./ext/bigdecimal/missing/dtoa.c:#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
./ext/bigdecimal/bigdecimal.c: nc += (nc + mc - 1) / mc + 1;
./ext/bigdecimal/bigdecimal.c: mx = (mx + BASE_FIG - 1) / BASE_FIG; /* Determine allocation unit. */
./ext/bigdecimal/bigdecimal.c: mf = (mf + BASE_FIG - 1) / BASE_FIG + 2; /* Needs 1 more for div */
./ext/bigdecimal/bigdecimal.c: nalloc = (ni + nf + BASE_FIG - 1) / BASE_FIG + 1; /* set effective allocation */
./ext/bigdecimal/bigdecimal.c: size_t const round_limit = (VpGetPrecLimit() + BASE_FIG - 1) / BASE_FIG;
./ext/bigdecimal/bigdecimal.c: if ((ix + BASE_FIG - 1) / BASE_FIG > ixDigit + 1) return 0;
./ext/bigdecimal/bits.h:#define roomof(x, y) (((x) + (y) - 1) / (y))
./internal/numeric.h: VALUE values[(SIZEOF_DOUBLE + SIZEOF_VALUE - 1) / SIZEOF_VALUE];
./regcomp.c: OnigDistance str_len = (byte_len + mb_len - 1) / mb_len;
./bignum.c: size_t num_bdigits = (num_bits + BITSPERDIG - 1) / BITSPERDIG;
./missing/dtoa.c:#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
./numeric.c: char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];
./gc.c:#define CEILDIV(i, mod) (((i) + (mod) - 1)/(mod))
Naming:
I was not sure whether to name it ceildiv or divceil because there are both divmod and fdiv.
Since divmod is a method that returns two elements, the quotient and the remainder,
while fdiv is a method that performs Float division, I decided to follow fdiv.
I removed Numeric#ceildiv. The PR contains only Integer#ceildiv.
Or, class Integer; def ceildiv(other) = -div(-other); end in numeric.rb.
This may be faster due to method caches.
I tried benchmarking. As shown below, nobu-san's suggestion is faster. Thank you!
require 'benchmark'
n = 10 ** 7
Benchmark.bm do |x|
x.report("Fixnum/Fixnum") { a, b = 5, 2; n.times { a.ceildiv(b) } }
x.report("Bignum/Bignum") { a, b = 10**100, 10**99 - 1; n.times { a.ceildiv(b) } }
x.report("Bignum/Fixnum") { a, b = 10**100, 3; n.times { a.ceildiv(b) } }
end
Original:
user system total real
Fixnum/Fixnum 3.340009 0.043029 3.383038 ( 3.384022)
Bignum/Bignum 8.229500 0.118543 8.348043 ( 8.349574)
Bignum/Fixnum 8.328971 0.097842 8.426813 ( 8.426952)
Improved:
user system total real
Fixnum/Fixnum 0.699140 0.000961 0.700101 ( 0.700199)
Bignum/Bignum 5.076165 0.083160 5.159325 ( 5.159360)
Bignum/Fixnum 5.548684 0.115372 5.664056 ( 5.666735)