rknn-toolkit2 icon indicating copy to clipboard operation
rknn-toolkit2 copied to clipboard

Results 208 rknn-toolkit2 issues
Sort by recently updated
recently updated
newest added

Error信息如下: --> Loading model --> Building model Analysing : 100%|███████████████████████████████████████████████| 139/139 [00:00

![image](https://user-images.githubusercontent.com/30183023/137706561-f5970a5e-d415-4a0e-bf54-32469941982b.png) Any kind advice for this issue?

Hi team, I’ve recently bought an Asus Tinker Edge R to reply machine learning model. After few research and reading and I didn’t find much documentation on how to run...

The README states that ReduceL2 operator is supported and inference is successful on RKNN-Toolkit2, but it throws an error during inference on RKNNRT, “Unsupport CPU op: ReduceL2 in this librknnrt.so”.

RK3588嵌入式系统ubuntu20.04安装tensorflow2.6.2 请问怎么解决? Traceback (most recent call last): File "changeh5torknn.py", line 2, in from rknn.api import RKNN File "/usr/local/lib/python3.8/dist-packages/rknn/api/__init__.py", line 1, in from rknn.api.rknn import RKNN File "/usr/local/lib/python3.8/dist-packages/rknn/api/rknn.py", line 5, in...

PC环境: 系统版本:ubuntu 20.04 python: 3.8 rknn-toolkit2: rknn_toolkit2-2.0.0b0+9bab5682 问题描述: 1)在tflite2rknn,onnx2rknn中都报错No lowering found for: GatherNd, node type = GatherND, use CustomOperatorLower instead 2)是否支持Divfloor操作

After conversion of yolov8s from ONNX without any errors being reported and using same format as previous yolov5s (which is working), I get this fault on inference after successful load...

```python print('--> Building model') ret = self.model.build(do_quantization=False) if ret != 0: print('Build model failed!') exit(ret) print('done') ``` 加载模型时出现这个错误 E RKNN: [00:09:08.335] Unsupport type bits 64 for depthwise 已放弃 (核心已转储) 请问该怎么处理?

My model needs to input 5 consecutive frames of images and detect moving targets in the picture, which uses some 3D convolution. Now it can be successfully converted to the...

硬件:RK3588S 软件: - [rknn_toolkit_lite2-1.5.2-cp39-cp39-linux_aarch64.whl](https://github.com/rockchip-linux/rknn-toolkit2/blob/master/rknn_toolkit_lite2/packages/rknn_toolkit_lite2-1.5.2-cp39-cp39-linux_aarch64.whl) - [rknpu2](https://github.com/rockchip-linux/rknpu2/tree/master/runtime/RK3588/Linux) 升级命令如下: ```bash 升级rknpu2 cp rknpu2/runtime/RK3588/Linux/rknn_server/aarch64/usr/bin/rknn_server /usr/bin/rknn_server cp rknpu2/runtime/RK3588/Linux/librknn_api/aarch64/librknnrt.so /usr/lib/librknnrt.so cp rknpu2/runtime/RK3588/Linux/librknn_api/aarch64/librknn_api.so /usr/lib/librknn_api.so ``` 代码如下: ```python3 rknn_handle = RKNN(verbose=False) rknn_file = "weights/FastestDet.rknn" ret = rknn_handle.load_rknn(rknn_file)...