rknn-toolkit
rknn-toolkit copied to clipboard
lprnet车牌识别模型(有过内部修改),在toolkit1.7.3环境下转换的模型,在3399pro上,每次推理出来结果都不相同,差别很大,在正负几千到几万范围内,但在toolkit1.4环境下转换的模型在3568上是正常的
Bumps [tensorflow](https://github.com/tensorflow/tensorflow) from 1.14.0 to 2.9.3. Release notes Sourced from tensorflow's releases. TensorFlow 2.9.3 Release 2.9.3 This release introduces several vulnerability fixes: Fixes an overflow in tf.keras.losses.poisson (CVE-2022-41887) Fixes a...
Bumps [tensorflow-gpu](https://github.com/tensorflow/tensorflow) from 1.14.0 to 2.9.3. Release notes Sourced from tensorflow-gpu's releases. TensorFlow 2.9.3 Release 2.9.3 This release introduces several vulnerability fixes: Fixes an overflow in tf.keras.losses.poisson (CVE-2022-41887) Fixes a...
python 3.8 并不支持 onnx=1.6.0 吧? https://github.com/onnx/onnx/issues/2734 我对 METADATA 做了以下修改才安装通过 ``` Requires-Dist: onnx (>=1.6.0) ```
Hello everyone, Very appreciated of your work. In my device (armvl7 arch), I've installed rknn-toolkit-lite from your repo. I've inspected that the repo does not have rknn-toolkit .whl files for...
源码: ```python import numpy as np import cv2 from rknn.api import RKNN import torchvision.models as models import torch if __name__ == '__main__': model = './hybridnets.pt' input_size_list = [[3, 1280, 720]]...
模型是paddle2onnx 转过来的, 
E Calc node Conv : Conv_12 output shape fail E Catch exception when loading onnx model: testonnx.onnx! E Traceback (most recent call last): E File "rknn/base/RKNNlib/onnx_ir/onnx_numpy_backend/shape_inference.py", line 65, in rknn.base.RKNNlib.onnx_ir.onnx_numpy_backend.shape_inference.infer_shape...
请问用resnet50做backbone训练reid行人特征提取,当模型输出特征没有零值的时候转成rknn全部正常。当某个训练出的模型输出特征数据是下面结构时(特征有一半是0值,但是已经收敛,用来比对也很正常),转成rknn模型后结果会完全错误,现象是转成rknn模型后不同图片会出现同样输出。是因为什么原因?  测试了3种方式, 1: pytorch直接转rknn,不量化do_quantization=False 2: pytorch直接转rknn,不量化do_quantization=True, 300张图片量化 3:pytorch先转onnx,onnx输出结果与pytorch一致,比对相似度也一致。onnx转rknn后,模型输出结果错误,比对相似度全为0,不同图片输出特征一样