MT3-pytorch
MT3-pytorch copied to clipboard
Unofficial implementation of MT3: Multi-Task Multitrack Music Transcription (Google Research, 2022) in pytorch
MT3-pytorch for MAESTRO dataset
Now, this is an unofficial implementation of MT3 for single track(SEQUENCE-TO-SEQUENCE PIANO TRANSCRIPTION WITH TRANSFORMERS) in pytorch.
Converted original model code in MT3 repository from jax to pytorch.
Later, I will update to extend the model to multi-track and multi-task for implementing the MT3 model with Slakh2100 dataset.
Prerequisite
First of all, please install the appropriate version of pytorch library.
With Anaconda, you can install using below command line(example).
$ conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch
After then, install the specified libraries in requirements.txt file.
$ pip install -r requirements.txt
Usage
Not done yet.
Train
$ python train.py
Results
Citations
@article{
title={SEQUENCE-TO-SEQUENCE PIANO TRANSCRIPTION WITH TRANSFORMERS},
author={Curtis Hawthorne, Ian Simon, Rigel Swavely, Ethan Manilow and Jesse Engel},
paper={https://arxiv.org/abs/2107.09142v1},
year={2021}
}