tasn
                                
                                
                                
                                    tasn copied to clipboard
                            
                            
                            
                        elemwise_op_common.h:133: Check failed: assign(&dattr, (*vec)[i]) Incompatible attr in node at 0-th output: expected [2048], got [512]
how to deal with this problem
Traceback (most recent call last):
File "/root/workspace/tasn-master/tasn-mxnet/example/tasn/train.py", line 65, in 
""" Adapted from https://github.com/phunterlau/iNaturalist.git
by Heliang Zheng 03/28/2019
""" import random import os import argparse import logging logging.basicConfig(level=logging.DEBUG) from common import fit, evaluate import common.cub_data as data import mxnet as mx import numpy as np import os, urllib import model
if name == "main":
os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"] = "1"
random.seed(0)
np.random.seed(0)
mx.random.seed(0)
# parse args
parser = argparse.ArgumentParser(description="fine-tune a dataset",
                                 formatter_class=argparse.ArgumentDefaultsHelpFormatter)
train = fit.add_fit_args(parser)
data.add_data_args(parser)
aug = data.add_data_aug_args(parser)
data.set_data_aug_level(parser, 1)
parser.set_defaults(image_shape = '3,512,512', num_epochs=300,
                    lr=0.1, lr_step_epochs='100,200', wd=0, mom=0)
args = parser.parse_args()
# args.gpus = 0,1,2,3
args.gpus = 1
args.data_nthreads = 128
args.batch_size = 96
args.num_classes = 200
args.num_examples = 5994
# args = "0,1,2,3,4,5,6,7"
# batch_size_per_gpu = np.int(args.batch_size/len(args.gpus.replace(',','')))
batch_size_per_gpu = np.int(args.batch_size / 1)
# load pretrained model
dir_path = os.path.dirname(os.path.realpath(__file__))
a=mx.symbol.infer_shape
print(a.shape)
prefix = 'model/resnet-50'
epoch = 0
sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch)
(new_sym, new_args, new_auxs) = model.tasn(
    sym, arg_params, aux_params, args.num_classes, batch_size_per_gpu)     
# train
fit.fit(args        = args,
        network     = new_sym,
        data_loader = data.get_custom_iter,
        arg_params  = new_args,
        aux_params  = new_auxs,
        label_names = (['att_net_label', 'part_net_label', 'master_net_label', 'part_net_aux_label', 'master_net_aux_label']),
        eval_metric = evaluate.Multi_Accuracy(num=6))
                                    
                                    
                                    
                                
hi, did you fix it?