py-faster-rcnn
py-faster-rcnn copied to clipboard
Resnet-101 with fasterRCNN using test_frcnn is not working.
Hi , I am trying to get FasterRCNN with resnet-101 running using caffe's cpp code. I specifically use test_frcnn.exe for running this. My command line exeuction looks as below : test_frcnn-d --model C:\Projects\caffe-faster-rcnn\models\FRCNN\res101\test.proto --weights C:\Projects\caffe-faster-rcnn-cpp-windows\examples\FRCNN\resnet-101_rpn_stage1_iter_320000.caffemodel --default_c C:\Projects\caffe-faster-rcnn-cpp-windows\examples\FRCNN\config\voc_config.json --image_root C:\Projects\VOC2007\JPEGImages\ --image_list C:\Projects\caffe-faster-rcnn-cpp-windows\examples\FRCNN\dataset\voc2007.test --out_file C:\Projects\caffe-faster-rcnn-cpp-windows\scripts\build\examples\FRCNN\results\voc2007_test_res101.frcnn --max_per_image 100
I have taken FasterRCNN with resnet-101 model from link:
https://onedrive.live.com/?authkey=%21AM0tZPqBFtMejZ8&cid=D75441070ACA1109&id=D75441070ACA1109%211281&parId=root&action=locate
The output of test_frcnn looks like this
I1031 11:28:40.435735 14092 frcnn_api.cpp:47] SET MODEL DONE, ROI POOLING LAYER : roi_pool4
I1031 11:28:40.435735 14092 frcnn_param.cpp:151] == Train Parameters ==
I1031 11:28:40.436702 14092 frcnn_param.cpp:152] scale : 600.00
I1031 11:28:40.438741 14092 frcnn_param.cpp:153] max_size : 1000
I1031 11:28:40.438741 14092 frcnn_param.cpp:154] batch_size : 128
I1031 11:28:40.439693 14092 frcnn_param.cpp:156] fg_fraction : 0.25
I1031 11:28:40.440692 14092 frcnn_param.cpp:157] fg_thresh : 0.5
I1031 11:28:40.440692 14092 frcnn_param.cpp:158] bg_thresh_hi : 0.5
I1031 11:28:40.440692 14092 frcnn_param.cpp:159] bg_thresh_lo : 0
I1031 11:28:40.441689 14092 frcnn_param.cpp:160] use_flipped : yes
I1031 11:28:40.441689 14092 frcnn_param.cpp:162] use_bbox_reg : yes
I1031 11:28:40.442687 14092 frcnn_param.cpp:163] bbox_thresh : 0.5
I1031 11:28:40.442687 14092 frcnn_param.cpp:164] snapshot_infix :
I1031 11:28:40.442687 14092 frcnn_param.cpp:165] normalize_targets : yes
I1031 11:28:40.443683 14092 frcnn_param.cpp:167] rpn_pos_overlap : 0.7
I1031 11:28:40.443683 14092 frcnn_param.cpp:168] rpn_neg_overlap : 0.3
I1031 11:28:40.443683 14092 frcnn_param.cpp:169] clobber_positives : no
I1031 11:28:40.444680 14092 frcnn_param.cpp:170] rpn_fg_fraction : 0.5
I1031 11:28:40.444680 14092 frcnn_param.cpp:171] rpn_batchsize : 256
I1031 11:28:40.445677 14092 frcnn_param.cpp:172] rpn_nms_thresh : 0.7
I1031 11:28:40.447674 14092 frcnn_param.cpp:173] rpn_pre_nms_top_n : 12000
I1031 11:28:40.448670 14092 frcnn_param.cpp:174] rpn_post_nms_top_n: 2000
I1031 11:28:40.448670 14092 frcnn_param.cpp:175] rpn_min_size : 16
I1031 11:28:40.448670 14092 frcnn_param.cpp:176] rpn_bbox_inside_weights :1.00, 1.00
I1031 11:28:40.449669 14092 frcnn_param.cpp:177] rpn_positive_weight :-1
I1031 11:28:40.449669 14092 frcnn_param.cpp:178] rpn_allowed_border :0
I1031 11:28:40.450664 14092 frcnn_param.cpp:180] == Test Parameters ==
I1031 11:28:40.450664 14092 frcnn_param.cpp:181] test_scales : 600.00
I1031 11:28:40.450664 14092 frcnn_param.cpp:182] test_max_size : 1000
I1031 11:28:40.451660 14092 frcnn_param.cpp:183] test_nms : 0.3
I1031 11:28:40.451660 14092 frcnn_param.cpp:184] test_bbox_reg : yes
I1031 11:28:40.451660 14092 frcnn_param.cpp:185] test_rpn_nms_thresh : 0.7
I1031 11:28:40.452657 14092 frcnn_param.cpp:186] rpn_pre_nms_top_n : 12000
I1031 11:28:40.452657 14092 frcnn_param.cpp:187] rpn_post_nms_top_n : 300
I1031 11:28:40.453656 14092 frcnn_param.cpp:188] test_rpn_min_sizen : 16
I1031 11:28:40.453656 14092 frcnn_param.cpp:190] == Global Parameters ==
I1031 11:28:40.453656 14092 frcnn_param.cpp:191] pixel_means[BGR] : 102.98 , 115.947 , 122.772
I1031 11:28:40.454653 14092 frcnn_param.cpp:192] rng_seed : 3
I1031 11:28:40.454653 14092 frcnn_param.cpp:193] eps : 1e-14
I1031 11:28:40.454653 14092 frcnn_param.cpp:194] inf : 1e+08
I1031 11:28:40.456647 14092 frcnn_param.cpp:195] feat_stride : 16
I1031 11:28:40.457644 14092 frcnn_param.cpp:196] anchors_size : 36
I1031 11:28:40.457644 14092 frcnn_param.cpp:197] test_score_thresh : 0.05
I1031 11:28:40.458643 14092 frcnn_param.cpp:198] n_classes : 21
I1031 11:28:40.458643 14092 frcnn_param.cpp:199] iter_test : -1
I1031 11:28:40.459645 14092 test_frcnn.cpp:78] image list : C:\Projects\caffe-faster-rcnn-cpp-windows\examples\FRCNN\dataset\voc2007.test
I1031 11:28:40.459645 14092 test_frcnn.cpp:79] output file : C:\Projects\caffe-faster-rcnn-cpp-windows\scripts\build\examples\FRCNN\results\voc2007_test_res101.frcnn
I1031 11:28:40.459645 14092 test_frcnn.cpp:80] image root : C:\Projects\VOC2007\JPEGImages
I1031 11:28:40.460638 14092 test_frcnn.cpp:81] max_per_image : 100
I1031 11:30:42.327216 14092 frcnn_api.cpp:81] height: 500 width: 353
E1031 11:30:43.508926 14092 frcnn_api.cpp:98] im_info : 850, 600, 1.69972
E1031 11:30:43.560787 14092 frcnn_api.cpp:8] img_in (CHW) : 3, 850, 600
E1031 11:30:52.687629 14092 frcnn_api.cpp:52] FORWARD BEGIN
E1031 11:31:22.743995 14092 frcnn_proposal_layer.cpp:47] ========== enter proposal layer
E1031 11:31:34.242405 14092 frcnn_proposal_layer.cpp:89] ========== generate anchors
E1031 11:31:34.382033 14092 frcnn_proposal_layer.cpp:126] ========== after clip and remove size < threshold box 18120
E1031 11:31:34.495728 14092 frcnn_proposal_layer.cpp:135] ========== apply nms, pre nms number is : 12000
E1031 11:31:36.456616 14092 frcnn_proposal_layer.cpp:153] rpn number after nms: 300
E1031 11:31:36.458629 14092 frcnn_proposal_layer.cpp:155] ========== copy to top
E1031 11:31:36.533031 14092 frcnn_proposal_layer.cpp:174] ========== exit proposal layer
E1031 11:32:13.613378 14092 frcnn_api.cpp:59] FORWARD END, Loss : 0
I1031 11:32:16.731925 14092 test_frcnn.cpp:121] Handle 1 th image : 000001.jpg, with image_thresh : 0, 0 -> 0 boxes
I1031 11:32:17.777040 14092 frcnn_api.cpp:81] height: 500 width: 335
E1031 11:32:18.557649 14092 frcnn_api.cpp:98] im_info : 896, 600, 1.79104
E1031 11:32:18.627769 14092 frcnn_api.cpp:8] img_in (CHW) : 3, 896, 600
E1031 11:32:19.490888 14092 frcnn_api.cpp:52] FORWARD BEGIN
Its not able to detect the objects in image. Whereas if i feed fasterRCNN with VGG16, it shows objects. Am i doing anything wrong here ?, Please help.
Any ideas , please !