py-faster-rcnn
                                
                                 py-faster-rcnn copied to clipboard
                                
                                    py-faster-rcnn copied to clipboard
                            
                            
                            
                        [IndexError: Index out of range] While I training on ImageNet dataset.
I tried to train on ImageNet dataset with pre-trained VGG16 model which provided by ImageNet model (solver.prototxt, VGG16.v2.caffemodel) following this post http://sunshineatnoon.github.io/Train-fast-rcnn-model-on-imagenet-without-matlab/
I created imagenet.py file in $FRCNN_ROOT/lib/datasets directory and follow all of the steps. But when I tried I got below error messages.
I0427 13:33:15.288508  8314 layer_factory.hpp:77] Creating layer input-data
I0427 13:33:15.307318  8314 net.cpp:106] Creating Layer input-data
I0427 13:33:15.307342  8314 net.cpp:411] input-data -> data
I0427 13:33:15.307358  8314 net.cpp:411] input-data -> im_info
I0427 13:33:15.307368  8314 net.cpp:411] input-data -> gt_boxes
Top length : 3
XX: 3 <class 'caffe._caffe.RawBlobVec'> ['class', 'contains', 'delattr', 'delitem', 'dict', 'doc', 'format', 'getattribute', 'getitem', 'hash', 'init', 'instance_size', 'iter', 'len', 'module', 'new', 'reduce', 'reduce_ex', 'repr', 'setattr', 'setitem', 'sizeof', 'str', 'subclasshook', 'weakref', 'append', 'extend']
Error idx is 3
Traceback (most recent call last):
File "./tools/train_net.py", line 113, in 
When I printed the top length and idx which causes error the result is 3 so I thought the idx 3 is dosen't exists. And I already checked Issue #36, which has same error with me but I couldn't solved the problem.
This is my repository I edited from fork . (https://github.com/JudeLee19/py-faster-rcnn) Thank you in advance.
I have the same problem, did u solved that?
Changing cfg.TRAIN.HAS_RPN to be True. Maybe some debugging could help...
it is not config bug.it is muliti process data share bug.
cfg.TRAIN.SNAPSHOT_INFIX = 'stage1'
# mp_kwargs = dict(
#         queue=mp_queue,
#         imdb_name=args.imdb_name,
#         init_model=args.pretrained_model,
#         solver=solvers[0],
#         max_iters=max_iters[0],
#         cfg=cfg)
# p = mp.Process(target=train_rpn, kwargs=mp_kwargs)
# p.start()
# rpn_stage1_out = mp_queue.get()
# p.join()
cfg.TRAIN.SNAPSHOT_INFIX = 'stage1'
train_rpn(queue=mp_queue,
        imdb_name=args.imdb_name,
        init_model=args.pretrained_model,
        solver=solvers[0],
        max_iters=max_iters[0],
        cfg=cfg)
rpn_stage1_out = mp_queue.get()