can not find used cases or detailed description for each available function
can not find used cases or detailed description for each available function it is pity , great code but how to use it?
import datetime import logging import json
import pandas as pd import numpy as np
from yfinance import utils, const from yfinance.data import TickerData from yfinance.exceptions import YFinanceException, YFNotImplementedError
class Fundamentals:
def __init__(self, data: TickerData, proxy=None):
self._data = data
self.proxy = proxy
self._earnings = None
self._financials = None
self._shares = None
self._financials_data = None
self._fin_data_quote = None
self._basics_already_scraped = False
self._financials = Financials(data)
@property
def financials(self) -> "Financials":
return self._financials
@property
def earnings(self) -> dict:
if self._earnings is None:
raise YFNotImplementedError('earnings')
return self._earnings
@property
def shares(self) -> pd.DataFrame:
if self._shares is None:
raise YFNotImplementedError('shares')
return self._shares
class Financials: def init(self, data: TickerData): self._data = data self._income_time_series = {} self._balance_sheet_time_series = {} self._cash_flow_time_series = {}
def get_income_time_series(self, freq="yearly", proxy=None) -> pd.DataFrame:
res = self._income_time_series
if freq not in res:
res[freq] = self._fetch_time_series("income", freq, proxy=None)
return res[freq]
def get_balance_sheet_time_series(self, freq="yearly", proxy=None) -> pd.DataFrame:
res = self._balance_sheet_time_series
if freq not in res:
res[freq] = self._fetch_time_series("balance-sheet", freq, proxy=None)
return res[freq]
def get_cash_flow_time_series(self, freq="yearly", proxy=None) -> pd.DataFrame:
res = self._cash_flow_time_series
if freq not in res:
res[freq] = self._fetch_time_series("cash-flow", freq, proxy=None)
return res[freq]
@utils.log_indent_decorator
def _fetch_time_series(self, name, timescale, proxy=None):
# Fetching time series preferred over scraping 'QuoteSummaryStore',
# because it matches what Yahoo shows. But for some tickers returns nothing,
# despite 'QuoteSummaryStore' containing valid data.
allowed_names = ["income", "balance-sheet", "cash-flow"]
allowed_timescales = ["yearly", "quarterly"]
if name not in allowed_names:
raise ValueError("Illegal argument: name must be one of: {}".format(allowed_names))
if timescale not in allowed_timescales:
raise ValueError("Illegal argument: timescale must be one of: {}".format(allowed_names))
try:
statement = self._create_financials_table(name, timescale, proxy)
if statement is not None:
return statement
except YFinanceException as e:
utils.get_yf_logger().error("%s: Failed to create %s financials table for reason: %r", self._data.ticker, name, e)
return pd.DataFrame()
def _create_financials_table(self, name, timescale, proxy):
if name == "income":
# Yahoo stores the 'income' table internally under 'financials' key
name = "financials"
keys = const.fundamentals_keys[name]
try:
return self.get_financials_time_series(timescale, keys, proxy)
except Exception as e:
pass
def get_financials_time_series(self, timescale, keys: list, proxy=None) -> pd.DataFrame:
timescale_translation = {"yearly": "annual", "quarterly": "quarterly"}
timescale = timescale_translation[timescale]
# Step 2: construct url:
ts_url_base = \
"https://query2.finance.yahoo.com/ws/fundamentals-timeseries/v1/finance/timeseries/{0}?symbol={0}" \
.format(self._data.ticker)
url = ts_url_base + "&type=" + ",".join([timescale + k for k in keys])
# Yahoo returns maximum 4 years or 5 quarters, regardless of start_dt:
start_dt = datetime.datetime(2016, 12, 31)
end = pd.Timestamp.utcnow().ceil("D")
url += "&period1={}&period2={}".format(int(start_dt.timestamp()), int(end.timestamp()))
# Step 3: fetch and reshape data
json_str = self._data.cache_get(url=url, proxy=proxy).text
json_data = json.loads(json_str)
data_raw = json_data["timeseries"]["result"]
# data_raw = [v for v in data_raw if len(v) > 1] # Discard keys with no data
for d in data_raw:
del d["meta"]
# Now reshape data into a table:
# Step 1: get columns and index:
timestamps = set()
data_unpacked = {}
for x in data_raw:
for k in x.keys():
if k == "timestamp":
timestamps.update(x[k])
else:
data_unpacked[k] = x[k]
timestamps = sorted(list(timestamps))
dates = pd.to_datetime(timestamps, unit="s")
df = pd.DataFrame(columns=dates, index=list(data_unpacked.keys()))
for k, v in data_unpacked.items():
if df is None:
df = pd.DataFrame(columns=dates, index=[k])
df.loc[k] = {pd.Timestamp(x["asOfDate"]): x["reportedValue"]["raw"] for x in v}
df.index = df.index.str.replace("^" + timescale, "", regex=True)
# Reorder table to match order on Yahoo website
df = df.reindex([k for k in keys if k in df.index])
df = df[sorted(df.columns, reverse=True)]
return df
for example here https://algotrading101.com/learn/yfinance-guide/ we see many capabilities mentioned , but where is systematic description ?
@Sandy4321 In my opinion, the code is not complicated such that it needs documentation as you suggest. Functions that start with "_" are private, and shouould not be your concern, and the same goes for decorators. If you can understand those, than you can surely figure out how the API works.
As far as all the other functions like "get_income_time_series" and "get_balance_sheet_time_series", they are like, 5 lines of code with type annotations. Writing docs for those would definitely be overkill.
On the other hand, this is an open-source project, see something that's missing or not working properly? fix it and push the changes! (especially when it comes to writing docs that's usually a pain in the a$$)