mmfall
mmfall copied to clipboard
which version of tensorflow/keras/python is?
Hello, when I tried to reproduce your article, using your mmFall.ipynb. I met these bugs: And it seems the reason is dismatch of version of tensorflow/keras/python?
My version: python=3.9, tensorflow=2.7 with keras include
So could you show your tf/keras/python version?
Thanks!
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
/tmp/ipykernel_17888/961939578.py in <module>
----> 1 HVRAE_result = AE.HVRAE_SL_predict(samples)
/tmp/ipykernel_17888/1483391771.py in HVRAE_SL_predict(self, inferencedata)
294 # Load the saved model
295
--> 296 model = load_model(self.model_dir + 'HVRAE_SL_mdl.h5', compile=False,
297 custom_objects={'sampling': sampling_predict, 'tf': tf})
298 adam = optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, amsgrad=False)
/opt/anaconda3/envs/yjtf/lib/python3.9/site-packages/keras/saving/save.py in load_model(filepath, custom_objects, compile, options)
198 if (h5py is not None and
199 (isinstance(filepath, h5py.File) or h5py.is_hdf5(filepath))):
--> 200 return hdf5_format.load_model_from_hdf5(filepath, custom_objects,
201 compile)
202
/opt/anaconda3/envs/yjtf/lib/python3.9/site-packages/keras/saving/hdf5_format.py in load_model_from_hdf5(filepath, custom_objects, compile)
178 model_config = model_config.decode('utf-8')
179 model_config = json_utils.decode(model_config)
--> 180 model = model_config_lib.model_from_config(model_config,
181 custom_objects=custom_objects)
182
/opt/anaconda3/envs/yjtf/lib/python3.9/site-packages/keras/saving/model_config.py in model_from_config(config, custom_objects)
50 '`Sequential.from_config(config)`?')
51 from keras.layers import deserialize # pylint: disable=g-import-not-at-top
---> 52 return deserialize(config, custom_objects=custom_objects)
53
54
/opt/anaconda3/envs/yjtf/lib/python3.9/site-packages/keras/layers/serialization.py in deserialize(config, custom_objects)
206 """
207 populate_deserializable_objects()
--> 208 return generic_utils.deserialize_keras_object(
209 config,
210 module_objects=LOCAL.ALL_OBJECTS,
/opt/anaconda3/envs/yjtf/lib/python3.9/site-packages/keras/utils/generic_utils.py in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name)
672
673 if 'custom_objects' in arg_spec.args:
--> 674 deserialized_obj = cls.from_config(
675 cls_config,
676 custom_objects=dict(
/opt/anaconda3/envs/yjtf/lib/python3.9/site-packages/keras/engine/training.py in from_config(cls, config, custom_objects)
2395 with generic_utils.SharedObjectLoadingScope():
2396 input_tensors, output_tensors, created_layers = (
-> 2397 functional.reconstruct_from_config(config, custom_objects))
2398 # Initialize a model belonging to `cls`, which can be user-defined or
2399 # `Functional`.
/opt/anaconda3/envs/yjtf/lib/python3.9/site-packages/keras/engine/functional.py in reconstruct_from_config(config, custom_objects, created_layers)
1271 # First, we create all layers and enqueue nodes to be processed
1272 for layer_data in config['layers']:
-> 1273 process_layer(layer_data)
1274 # Then we process nodes in order of layer depth.
1275 # Nodes that cannot yet be processed (if the inbound node
/opt/anaconda3/envs/yjtf/lib/python3.9/site-packages/keras/engine/functional.py in process_layer(layer_data)
1253 from keras.layers import deserialize as deserialize_layer # pylint: disable=g-import-not-at-top
1254
-> 1255 layer = deserialize_layer(layer_data, custom_objects=custom_objects)
1256 created_layers[layer_name] = layer
1257
/opt/anaconda3/envs/yjtf/lib/python3.9/site-packages/keras/layers/serialization.py in deserialize(config, custom_objects)
206 """
207 populate_deserializable_objects()
--> 208 return generic_utils.deserialize_keras_object(
209 config,
210 module_objects=LOCAL.ALL_OBJECTS,
/opt/anaconda3/envs/yjtf/lib/python3.9/site-packages/keras/utils/generic_utils.py in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name)
672
673 if 'custom_objects' in arg_spec.args:
--> 674 deserialized_obj = cls.from_config(
675 cls_config,
676 custom_objects=dict(
/opt/anaconda3/envs/yjtf/lib/python3.9/site-packages/keras/layers/core.py in from_config(cls, config, custom_objects)
1003 def from_config(cls, config, custom_objects=None):
1004 config = config.copy()
-> 1005 function = cls._parse_function_from_config(
1006 config, custom_objects, 'function', 'module', 'function_type')
1007
/opt/anaconda3/envs/yjtf/lib/python3.9/site-packages/keras/layers/core.py in _parse_function_from_config(cls, config, custom_objects, func_attr_name, module_attr_name, func_type_attr_name)
1055 elif function_type == 'lambda':
1056 # Unsafe deserialization from bytecode
-> 1057 function = generic_utils.func_load(
1058 config[func_attr_name], globs=globs)
1059 elif function_type == 'raw':
/opt/anaconda3/envs/yjtf/lib/python3.9/site-packages/keras/utils/generic_utils.py in func_load(code, defaults, closure, globs)
787 except (UnicodeEncodeError, binascii.Error):
788 raw_code = code.encode('raw_unicode_escape')
--> 789 code = marshal.loads(raw_code)
790 if globs is None:
791 globs = globals()
ValueError: bad marshal data (unknown type code)
Do you have the solution of this problem? I get the same problem now. I use thetensorflow-gpu=2.4.0, python=3.8
I recommend rewriting the model code using PyTorch to fix the version mismatch issue.