Pando
Pando copied to clipboard
infer_grn errors
infer_grn()
is giving me this error
Error in tf_g_cor[unique(tfs_use), , drop = F] : object of type 'S4' is not subsettable
is this the problem?
tf_g_cor <- as(sparse_cor(tf_x, g_x), 'generalMatrix')
R version 4.3.2 (2023-10-31)
Platform: x86_64-conda-linux-gnu (64-bit)
Running under: Ubuntu 18.04.6 LTS
Matrix products: default
BLAS/LAPACK: /nfs/team297/bs16/tools/conda_envs/r_pando/lib/libopenblasp-r0.3.24.so; LAPACK version 3.11.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: Europe/London
tzcode source: system (glibc)
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] MatrixGenerics_1.14.0 matrixStats_1.1.0
[3] BSgenome.Hsapiens.UCSC.hg38_1.4.5 BSgenome_1.70.1
[5] BiocIO_1.12.0 Biostrings_2.70.1
[7] XVector_0.42.0 dplyr_1.1.3
[9] rtracklayer_1.62.0 EnsDb.Hsapiens.v86_2.99.0
[11] ensembldb_2.26.0 AnnotationFilter_1.26.0
[13] GenomicFeatures_1.54.1 AnnotationDbi_1.64.1
[15] Biobase_2.62.0 GenomicRanges_1.54.1
[17] GenomeInfoDb_1.38.1 IRanges_2.36.0
[19] S4Vectors_0.40.1 BiocGenerics_0.48.1
[21] SeuratObject_4.1.4 Seurat_4.3.0
[23] Signac_1.11.0 Pando_1.0.5
[25] reticulate_1.34.0
loaded via a namespace (and not attached):
[1] ProtGenerics_1.34.0 spatstat.sparse_3.0-3
[3] bitops_1.0-7 DirichletMultinomial_1.44.0
[5] TFBSTools_1.40.0 httr_1.4.7
[7] RColorBrewer_1.1-3 tools_4.3.2
[9] sctransform_0.4.1 utf8_1.2.4
[11] R6_2.5.1 lazyeval_0.2.2
[13] uwot_0.1.16 withr_2.5.2
[15] sp_2.1-1 prettyunits_1.2.0
[17] gridExtra_2.3 progressr_0.14.0
[19] cli_3.6.1 spatstat.explore_3.2-5
[21] spatstat.data_3.0-3 readr_2.1.4
[23] ggridges_0.5.4 pbapply_1.7-2
[25] Rsamtools_2.18.0 R.utils_2.12.2
[27] dichromat_2.0-0.1 parallelly_1.36.0
[29] maps_3.4.1.1 RSQLite_2.3.3
[31] pals_1.8 generics_0.1.3
[33] gtools_3.9.4 ica_1.0-3
[35] spatstat.random_3.2-1 GO.db_3.18.0
[37] Matrix_1.6-3 fansi_1.0.5
[39] abind_1.4-5 R.methodsS3_1.8.2
[41] lifecycle_1.0.4 yaml_2.3.7
[43] SummarizedExperiment_1.32.0 SparseArray_1.2.2
[45] BiocFileCache_2.10.1 Rtsne_0.16
[47] grid_4.3.2 blob_1.2.4
[49] promises_1.2.1 crayon_1.5.2
[51] miniUI_0.1.1.1 lattice_0.22-5
[53] cowplot_1.1.1 annotate_1.80.0
[55] KEGGREST_1.42.0 mapproj_1.2.11
[57] pillar_1.9.0 rjson_0.2.21
[59] future.apply_1.11.0 codetools_0.2-19
[61] fastmatch_1.1-4 leiden_0.4.3
[63] glue_1.6.2 data.table_1.14.8
[65] vctrs_0.6.4 png_0.1-8
[67] spam_2.10-0 gtable_0.3.4
[69] poweRlaw_0.70.6 cachem_1.0.8
[71] S4Arrays_1.2.0 mime_0.12
[73] tidygraph_1.2.3 pracma_2.4.4
[75] survival_3.5-7 RcppRoll_0.3.0
[77] ellipsis_0.3.2 fitdistrplus_1.1-11
[79] ROCR_1.0-11 nlme_3.1-163
[81] bit64_4.0.5 progress_1.2.2
[83] filelock_1.0.2 RcppAnnoy_0.0.21
[85] irlba_2.3.5.1 KernSmooth_2.23-22
[87] colorspace_2.1-0 seqLogo_1.68.0
[89] DBI_1.1.3 tidyselect_1.2.0
[91] bit_4.0.5 compiler_4.3.2
[93] curl_5.1.0 xml2_1.3.5
[95] DelayedArray_0.28.0 plotly_4.10.3
[97] scales_1.2.1 caTools_1.18.2
[99] lmtest_0.9-40 rappdirs_0.3.3
[101] stringr_1.5.1 digest_0.6.33
[103] goftest_1.2-3 spatstat.utils_3.0-4
[105] motifmatchr_1.24.0 htmltools_0.5.7
[107] pkgconfig_2.0.3 sparseMatrixStats_1.14.0
[109] dbplyr_2.4.0 fastmap_1.1.1
[111] rlang_1.1.2 htmlwidgets_1.6.2
[113] shiny_1.7.5.1 farver_2.1.1
[115] zoo_1.8-12 jsonlite_1.8.7
[117] BiocParallel_1.36.0 R.oo_1.25.0
[119] RCurl_1.98-1.13 magrittr_2.0.3
[121] GenomeInfoDbData_1.2.11 dotCall64_1.1-0
[123] patchwork_1.1.3 munsell_0.5.0
[125] Rcpp_1.0.11 viridis_0.6.4
[127] stringi_1.8.1 ggraph_2.1.0
[129] zlibbioc_1.48.0 MASS_7.3-60
[131] plyr_1.8.9 parallel_4.3.2
[133] listenv_0.9.0 ggrepel_0.9.4
[135] deldir_1.0-9 CNEr_1.38.0
[137] graphlayouts_1.0.2 splines_4.3.2
[139] tensor_1.5 hms_1.1.3
[141] igraph_1.5.1 spatstat.geom_3.2-7
[143] reshape2_1.4.4 biomaRt_2.58.0
[145] TFMPvalue_0.0.9 XML_3.99-0.15
[147] tzdb_0.4.0 tweenr_2.0.2
[149] httpuv_1.6.12 grr_0.9.5
[151] RANN_2.6.1 tidyr_1.3.0
[153] purrr_1.0.2 polyclip_1.10-6
[155] future_1.33.0 scattermore_1.2
[157] ggplot2_3.4.4 ggforce_0.4.1
[159] xtable_1.8-4 restfulr_0.0.15
[161] later_1.3.1 viridisLite_0.4.2
[163] ggpointdensity_0.1.0 tibble_3.2.1
[165] memoise_2.0.1 GenomicAlignments_1.38.0
[167] cluster_2.1.4 globals_0.16.2