qmsggg_BlogCollect icon indicating copy to clipboard operation
qmsggg_BlogCollect copied to clipboard

Android包管理框架

Open qmsggg opened this issue 7 years ago • 2 comments

Android包管理框架:APK的打包流程

文章目录

  • 一 资源的编译和打包
  • 二 代码的编译和打包

Android的包文件APK分为两个部分:代码和资源,所以打包方面也分为资源打包和代码打包两个方面,这篇文章就来分析资源和代码的编译打包原理。

APK整体的的打包流程如下图所示:

具体说来:

  1. 通过AAPT工具进行资源文件(包括AndroidManifest.xml、布局文件、各种xml资源等)的打包,生成R.java文件。
  2. 通过AIDL工具处理AIDL文件,生成相应的Java文件。
  3. 通过Javac工具编译项目源码,生成Class文件。
  4. 通过DX工具将所有的Class文件转换成DEX文件,该过程主要完成Java字节码转换成Dalvik字节码,压缩常量池以及清除冗余信息等工作。
  5. 通过ApkBuilder工具将资源文件、DEX文件打包生成APK文件。
  6. 利用KeyStore对生成的APK文件进行签名。
  7. 如果是正式版的APK,还会利用ZipAlign工具进行对齐处理,对齐的过程就是将APK文件中所有的资源文件举例文件的起始距离都偏移4字节的整数倍,这样通过内存映射访问APK文件 的速度会更快。

上述流程都是Android Studio在编译时调用各种编译命令自动完成的,具体说来,如下所示:

  1. 创建Android工程。

android create project
-n packageTest2
-a MainActivity
-k com.package.test2
-t android-23
-p ./PackageTest2

  1. 编译R文件

aapt package
-f
-J ./gen
-M ./AndroidManifest.xml
-S ./res/
-I /Users/RadAsm/Library/AndroidSDK/sdk/platforms/android-23/android.jar

  1. 编译源代码文件

javac -source 1.6
-target 1.6
-cp /Users/RadAsm/Library/AndroidSDK/sdk/platforms/android-23/android.jar
./src/com/packtest/test1/MainActivity.java ./src/com/packtest/test1/R.java
-d ./gen/classes

  1. 编译DEX文件

dx --dex
--verbose
--output ./gen/dex/packtest1.dex ./gen/classes/

  1. 生成APK文件

aapt package -f
-J ./gen
-M ./AndroidManifest.xml
-S ./res/
-I /Users/RadAsm/Library/AndroidSDK/sdk/platforms/android-23/android.jar
-F ./output/res.apk

  1. APK文件对齐

zipalign -v -p 4 packagetest_unsigned.apk packagetest_aligned_unsigned.apk

  1. APK签名

apksigner sign --ks my-release-key.jks my-app.apk

以上便是APK打包的整个流程,我们再来总结一下:

  1. 除了assets和res/raw资源被原装不动地打包进APK之外,其它的资源都会被编译或者处理;
  2. 除了assets资源之外,其它的资源都会被赋予一个资源ID;
  3. 打包工具负责编译和打包资源,编译完成之后,会生成一个resources.arsc文件和一个R.java,前者保存的是一个资源索引表,后者定义了各个资源ID常量。
  4. 应用程序配置文件AndroidManifest.xml同样会被编译成二进制的XML文件,然后再打包到APK里面去。
  5. 应用程序在运行时通过AssetManager来访问资源,或通过资源ID来访问,或通过文件名来访问。

理解了整体的流程,我们再来看看具体的细节。

一 资源的编译和打包

在分析资源的编译和打包之前,我们先来了解一下Android程序包里有哪些资源。

我们知道Android应用程序的设计也是代码与资源相分离的,Android的资源文件可以分为两大类:

assets:assets资源放在主工程assets目录下,它里面保存一些原始的文件,可以以任何方式来进行组织,这些文件最终会原封不动的 地被打包进APK文件中。

获取asset资源也十分简单,如下所示:

InputStream is = getAssets.open("fileName");

res:res资源放在主工程的res目录下,这类资源一般都会在编译阶段生成一个资源ID供我们使用。

res资源包含了我们开发中使用的各种资源,具体说来:

  • animator
  • anim
  • color
  • drawable
  • layout
  • menu
  • raw
  • values
  • xml

这些资源的含义大家应该都很熟悉,这里就不再赘述。

上述9种类型的资源文件,除了raw类型资源,以及Bitmap文件的drawable类型资源之外,其它的资源文件均为文本格式的XML文件,它们在打包的过程中,会被编译成二进制格式的XML文件。这些二进制格式的XML文件分别有一个字符串资源池,用来保存文件中引 用到的每一个字符串,包括XML元素标签、属性名称、属性值,以及其它的一切文本值所使用到的字符串。这样原来在文本格式的XML文件中的每一个放置字符串的地方在二进制格式的XML文件中都被替换成一个索引到字符串资源池的整数值,这写整数值统一保存在 R.java类中,R.java会和其他源文件一起编译到APK中去。

前面我们提到xml编写的Android资源文件都会编译成二进制格式的xml文件,资源的打包都是由AAPT工具来完成的,资源打包主要有以下流程:

  1. 解析AndroidManifest.xml,获得应用程序的包名称,创建资源表。
  2. 添加被引用资源包,被添加的资源会以一种资源ID的方式定义在R.java中。
  3. 资源打包工具创建一个AaptAssets对象,收集当前需要编译的资源文件,收集到的资源保存在AaptAssets对象对象中。
  4. 将上一步AaptAssets对象保存的资源,添加到资源表ResourceTable中去,用于最终生成资源描述文件resources.arsc。
  5. 编译values类资源,这类资源包括数组、颜色、尺寸、字符串等值。
  6. 给bag、style、array这类资源分配资源ID。
  7. 编译xml资源文件,编译的流程分为:① 解析xml文件 ② 赋予属性名称资源ID ③ 解析属性值 ④ 将xml文件从文本格式转换为二进制格式,四步。
  8. 生成资源索引表resources.arsc。

1.1 资源ID

每个Android项目里都有有一个R.java文件,如下所示:

public final class R {
     //...
     public static final class anim {
        public static final int abc_fade_in=0x7f010000;
     }
     public static final class attr {
         public static final int actionBarDivider=0x7f020000;
     }
     public static final class string {
          public static final int actionBarDivider=0x7f020000;
     }
     //...
}

每个资源项后的整数就是资源ID,资源ID是一个4字节的无符整数,如下所示:

  • 最高字节是Package ID表示命名空间,标明资源的来源,Android系统自己定义了两个Package ID,系统资源命名空间:0x01 和 应用资源命名空间:0x7f。
  • 次字节是Type ID,表示资源的类型,例如:anim、color、string等。
  • 最低两个字节是Entry ID,表示资源在其所属资源类型中所出现的次序。

1.2 资源索引

上面提到,最终生成的是资源索引表resources.arsc,Android正是利用这个索引表根据资源ID进行资源的查找,为不同语言、不同地区、不同设备提供相对应的最佳资源。查找和通过Resources和 AssetManger来完成的,这个我们下面会讲。

resources.arsc是一个编译后的二进制文件,在Android Stduio里打开以后是这样的,如下所示:

可以看到resources.arsc里存放l各类资源的索引参数和配置信息。

resources.arsc的文件格式如下所示:

注:整个文件都是有一系列chuck(块)构成的,chuck是整个文件的划分单位,每个模块都是一个chuck,chuck最前面是一个ResChunk_header的结构体,用来描述整个chunk的信息,如下所示:

更多关于索引表格式的细节,可以查阅源码:

👉 ResourceTypes.h

resources.arsc索引表从上至下文件格式依次为:

  • 文件头:数据结构用ResTable_header来描述,用来描述整个文件的信息,包括文件头大小,文件大小,资源包Package的数量等信息。
  • 全局字符串池:存放所有的字符串,所以资源复用这些字符串,字符串里存放的是资源文件的路径名和资源值等信息。全局字符串池分为资源类型(type)字符串池和
  • 资源包:会有多个(例如:系统资源包、应用资源包)。

资源包也被划分为以下几个部分:

  • 包头:描述资源包相关信息。
  • 资源类型字符串池:存放资源的类型。
  • 资源名称字符串池:存放资源的名称。
  • 配置列表:存放语音、位置等手机配置信息,用来作为查找资源的标准。

从这里可以看到resources.arsc索引表存在很多常量池,常量池的使用目的也很明显,就是提供资源的复用率,减少resources.arsc索引表的体积,提高索引效率。

二 代码的编译和打包

附录

Android打包流程详图

qmsggg avatar Mar 02 '18 20:03 qmsggg

Android包管理框架:APK的安装流程

文章目录

我们来思考一下Android系统是如何安装一个APK文件的,从直观的流程上,当我们点击一个APK文件或者从应用商店下载一个APK文件,会弹起一个安装对话框,点击安装就可以安装应用。

那么这里面的流程是什么样的呢?🤔

首先很容易想到的是,Android根据文件类型MimeType来判断是否弹起安装页面,就行点击一个视频会调起视频播放器一样。

Android系统常见的文件类型如下所示:

👉 MimeUtils.java

  • add("application/zip", "zip");
  • add("application/vnd.android.package-archive", "apk");
  • add("video/mp4", "mp4");
  • add("video/3gpp", "3gpp");
  • add("text/plain", "txt");
  • add("image/gif", "gif");
  • add("image/ico", "ico");
  • add("image/jpeg", "jpeg");
  • add("image/jpeg", "jpg");

这里面就有我们今天聊的APK文件,当点击APK文件时会调起安装界面,这个安装界面其实就是PackageInstallerActivity

//点击APK文件,弹起对话框,询问是否安装此应用。
File apkFile;
Intent intent = new Intent(Intent.ACTION_VIEW);
intent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
intent.setDataAndType(Uri.fromFile(apkFile), "application/vnd.android.package-archive");
context.startActivity(intent);

PackageInstallerActivity显示的是个对话框,当点击确定安装以后,会启动真正的安装界面,这个界面就是InstallAppProgress,它也是一个Activity,会显示安装的进度,

整个APK的安装流程如下所示:

  1. 复制APK到/data/app目录下,解压并扫描安装包。
  2. 资源管理器解析APK里的资源文件。
  3. 解析AndroidManifest文件,并在/data/data/目录下创建对应的应用数据目录。
  4. 然后对dex文件进行优化,并保存在dalvik-cache目录下。
  5. 将AndroidManifest文件解析出的四大组件信息注册到PackageManagerService中。
  6. 安装完成后,发送广播。

总体说来就两件事情拷贝APK和解析APK,解析APK主要是解析APK的应用配置文件AndroidManifest.xml,以便获得它的安装信息。在安装的过程中还会这个应用分配Linux用 户ID和Linux用户组ID(以便它可以在系统中获取合适的运行权限)。

关于Linux用户ID与Linux用户组ID

Linux用户ID与Linux用户组ID的分配与管理是由Settings类来完成的。

Settings:该类用来管理应用程序的安装信息(APK包信息、Linux用户ID、Linux用户组ID等),Android系统在每次重启是都会将应用程序重新安装一遍,Settings就是保证在重新安装应用时可以恢复应用的信息。

在Android系统中,用户ID可以划分为以下层次:

  • 小于FIRST_APPLICATION_UID:特权用户ID,用户应用程序不能直接使用,但是可以以一种sharedUserId的方式共享使用,例如想要修改系统时间就设置android:sharedUserId = "android.uid.system"。
  • FIRST_APPLICATION_UID 至 FIRST_APPLICATION_UID + MAX_APPLICATION_UIDS:给用户应用程序使用,共有1000个。
  • 大于FIRST_APPLICATION_UID + MAX_APPLICATION_UIDS:非法的Linxu用户ID。

以上便是对APK安装流程的整体概述,有了整体的把握,我们接着来看实现细节。APK安装流程序列图如下所示:

👉 点击图片查看高清大图

嗯,看起来有点长😤,但只要我们掌握核心逻辑和原理,再长的函数调用链都是纸老虎。😎

整个序列图按照颜色划分为三个进程:

  • PackageInstaller进程:PackageInstaller事实上是一个应用,它负责APK安装以及卸载过程中与用户的交互流程。
  • SystemServer进程:该进程主要运行的是系统服务,APK的安装、卸载和查询都由PackageManagerService负责,它也是Android核心系统服务的一种,在SystemServer里初始化系统服务的时候被启动。
  • DefaultContainerService进程:DefaultContainerService也是一个单独的进程,它主要负责检查和复制设备上的文件,APK的复制就是由DefaultContainerService来完成的。

PackageInstaller和DefaultContainerService都比较简单,我们重点关注的是Android的包管理服务PackageManagerService。

一 APK解析流程

Android的应用程序是一个以".apk"为后缀名的归档文件,它在安装之前会先DefaultContainerService将自己复制到/data/app目录中去,拷贝完成以后 便开始解析APK。

这里提一下/data/app这个目录,Android不同的目录存放不同类型的应用,如下所示:

  • /system/framwork:保存的是资源型的应用程序,它们用来打包资源文件。
  • /system/app:保存系统自带的应用程序。
  • /data/app:保存用户安装的应用程序。
  • /data/app-private:保存受DRM保护的私有应用程序。
  • /vendor/app:保存设备厂商提供的应用程序。

APK文件里包含了一个配置文件AndroidManifest.xml,Android应用程序的解析过程就是解析这个xml文件的过程。

从上面的序列图我们可以看出,APK解析是从PackageManagerService的scanPackageLI开始的,而该方法内部又调用的是scanPackageDirtyLI()方法,我们来看一下这个方法的实现。

public class PackageManagerService extends IPackageManager.Stub {
    
       private PackageParser.Package scanPackageDirtyLI(PackageParser.Package pkg, int parseFlags,
               int scanFlags, long currentTime, UserHandle user) throws PackageManagerException {
           //...
           // writer
           synchronized (mPackages) {
               // 验证已注册的ContentProvider是否有其他同名,做冲突检测。
               if ((scanFlags & SCAN_NEW_INSTALL) != 0) {
                   final int N = pkg.providers.size();
                   int i;
                   for (i=0; i<N; i++) {
                       PackageParser.Provider p = pkg.providers.get(i);
                       if (p.info.authority != null) {
                           String names[] = p.info.authority.split(";");
                           for (int j = 0; j < names.length; j++) {
                               if (mProvidersByAuthority.containsKey(names[j])) {
                                   PackageParser.Provider other = mProvidersByAuthority.get(names[j]);
                                   final String otherPackageName =
                                           ((other != null && other.getComponentName() != null) ?
                                                   other.getComponentName().getPackageName() : "?");
                                   throw new PackageManagerException(
                                           INSTALL_FAILED_CONFLICTING_PROVIDER,
                                                   "Can't install because provider name " + names[j]
                                                   + " (in package " + pkg.applicationInfo.packageName
                                                   + ") is already used by " + otherPackageName);
                               }
                           }
                       }
                   }
               }
           }
         
           if (mPlatformPackage == pkg) {
              //...
           } else {
               // This is a normal package, need to make its data directory.
               dataPath = getDataPathForPackage(pkg.packageName, 0);
               if (dataPath.exists()) {
                   //...
               } else {
                   //invoke installer to do the actual installation
                   //这里创建了应用数据目录,用于存放用户数据
                   int ret = createDataDirsLI(pkgName, pkg.applicationInfo.uid,
                                              pkg.applicationInfo.seinfo);
                   //...
               }
             
           }
         
           // We also need to dexopt any apps that are dependent on this library.  Note that
           // if these fail, we should abort the install since installing the library will
           // result in some apps being broken.
           if (clientLibPkgs != null) {
               if ((scanFlags & SCAN_NO_DEX) == 0) {
                   for (int i = 0; i < clientLibPkgs.size(); i++) {
                       PackageParser.Package clientPkg = clientLibPkgs.get(i);
                       if (performDexOptLI(clientPkg, null /* instruction sets */, forceDex,
                               (scanFlags & SCAN_DEFER_DEX) != 0, false) == DEX_OPT_FAILED) {
                           throw new PackageManagerException(INSTALL_FAILED_DEXOPT,
                                   "scanPackageLI failed to dexopt clientLibPkgs");
                       }
                   }
               }
           }
         
           // writer
           synchronized (mPackages) {
               //...
               // 以下对四大组件进行注册
               int N = pkg.providers.size();
               StringBuilder r = null;
               int i;
               for (i=0; i<N; i++) {
                   PackageParser.Provider p = pkg.providers.get(i);
                   p.info.processName = fixProcessName(pkg.applicationInfo.processName,
                           p.info.processName, pkg.applicationInfo.uid);
                   //注册Content Provider
                   mProviders.addProvider(p);
                   //...
               }
               //...
           }
       }
       //...
   }
}

scanPackageDirtyLI是一个上千行的函数,它主要完成的工作如下所示:

  1. 调用PackageParser的parsePackage()方法解析AndroidMainfest.xml文件,主要包括四大组件、权限信息、用户ID,其他use-feature、shared-userId、use-library等 信息,并保存到PackageManagerService相应的成员变量中。
  2. 调用签名验证方法verifySignaturesLP()进行签名验证,验证失败的无法进行安装。
  3. 调用createDataDirsDirtyLI()方法创建应用目录/data/data/package,同时将APK中提取的DEX文件保存到/data/dalvik-cache中。
  4. 调用performDexOptLI()方法执行dexopt操作。

我们接着来看看APK里的信息是如何被解析出来的。

Apk的解析是PackageParser的parsePackage()函数来完成的,我们来看看它的实现。

public class PackageParser {
    
     public Package parsePackage(File packageFile, int flags) throws PackageParserException {
         if (packageFile.isDirectory()) {
             return parseClusterPackage(packageFile, flags);
         } else {
             return parseMonolithicPackage(packageFile, flags);
         }
     }
     
     private Package parseClusterPackage(File packageDir, int flags) throws PackageParserException {
             //...
             
             //初始化AssetManager
             final AssetManager assets = new AssetManager();
             try {
                 //...
                 //解析Base APk,解析AndroidManifest.xml
                 final Package pkg = parseBaseApk(baseApk, assets, flags);
                 if (pkg == null) {
                     throw new PackageParserException(INSTALL_PARSE_FAILED_NOT_APK,
                             "Failed to parse base APK: " + baseApk);
                 }
     
                 //如果splitName不为空,则循环解析Split Apk
                 if (!ArrayUtils.isEmpty(lite.splitNames)) {
                     final int num = lite.splitNames.length;
                     pkg.splitNames = lite.splitNames;
                     pkg.splitCodePaths = lite.splitCodePaths;
                     pkg.splitRevisionCodes = lite.splitRevisionCodes;
                     pkg.splitFlags = new int[num];
                     pkg.splitPrivateFlags = new int[num];
     
                     for (int i = 0; i < num; i++) {
                         //解析
                         parseSplitApk(pkg, i, assets, flags);
                     }
                 }
     
                 pkg.setCodePath(packageDir.getAbsolutePath());
                 pkg.setUse32bitAbi(lite.use32bitAbi);
                 return pkg;
             } finally {
                 IoUtils.closeQuietly(assets);
             }
         }
}

注:Split APK是Google为解决65535上限以及APK越来越大的问题而提出的一种方案,它可以将一个庞大的APK按照屏幕密度、ABI等形式拆分成多个独立的APK,这些APK共享相同的data、cache目录。 共享相同的进程,共享相同的包名。它们还可以使用各自的资源,并且继承了Base APK里的资源。更多细节可以查阅官方文档Build Multiple APKs

该方法调用parseBaseApk()去解析AndroidManifest.xml,AndroidManifest.xml也是xml文件,当然也使用XmlResourceParser来解析。这个解析相应标签并保存到PackageManagerService对应的成员变量中去。 此处就不再展开。

通过上面的讲解,我们理解了APK的计息流程,APK解包以后,里面有个DEX文件,我们前面也说过PackageManagerService的performPackageLI()方法去执行dexopt操作 ,我们接着来分析它是如何实现的。

二 DEX的dexopt流程

我们先来了解一下什么dexopt操作,dexopt操作实际上对DEX文件在执行前进行一些优化,但是不同的虚拟机操作有所不同。

  • Davlik:将dex文件优化生成odex文件,这个odex文件的后缀也是dex,保存在/data/dalvik-cache目录下。
  • ART:将dex文件翻译生成oat文件

从上面的序列图我们可以看出,Installer.java通过Socket方式请求守护进程installd完成dexopt操作。

public final class Installer {  
    public int dexopt(String apkPath, int uid, boolean isPublic) {  
        StringBuilder builder = new StringBuilder("dexopt");  
        builder.append(' ');  
        builder.append(apkPath);  
        builder.append(' ');  
        builder.append(uid);  
        builder.append(isPublic ? " 1" : " 0");  
        return execute(builder.toString());  
    }  
}

守护进程调用Command.c里的dexopt()方法执行dexopt操作,如果你对dexopt的C++层的实现感兴趣可以异步:

👉 Android ART运行时无缝替换Dalvik虚拟机的过程分析

APK安装完成以后会在桌面生成一个快捷图标,点击图标就可以启动应用了。

qmsggg avatar Mar 02 '18 20:03 qmsggg

Android包管理框架:APK的加载流程

文章目录

我们前面说过APK可以分为代码与资源两部分,那么在加载APK时也会涉及代码的加载和资源的加载,代码的加载事实上对应的就是Android应用进程的创建流程,关于这一块的内容我们在文章01Android进程框架:进程的创建、启动与调度流程已经分析过,本篇文章 我们着重来分析资源的加载流程。

我们知道在代码中我们通常会通过getResource()去获取Resources对象,Resource对象是应用进程内的一个全局对象,它用来访问应用的资源。除了Resources对象我们还可以通过getAsset()获取 AssetManger来读取指定文件路径下的文件。Resource与AssetManger这对兄弟就构造了资源访问框架的基础。

那么AssetManager对象与Resources对象在哪里创建的呢?🤔

3.1 AssetManager的创建流程

我们知道每个启动的应用都需要先创建一个应用上下文Context,Context的实际实现类是ContextImpl,ContextImpl在创建的时候创建了Resources对象和AssetManager对象。

AssetManager对象创建序列图如下所示:

我们可以发现在整个流程AssetManager在Java和C++层都有一个实现,那么它们俩有什么关系呢?🤔

事实上实际的功能都是由C++层的AssetManag来完成的。每个Java层的AssetManager对象都一个long型的成员变量mObject,用来保存C++层 AssetManager对象的地址,通过这个变量将Java层的AssetManager对象与C++层的AssetManager对象关联起来。

public final class AssetManager implements AutoCloseable {
    // 通过这个变量将Java层的AssetManager对象与C++层的AssetManager对象关联起来。
    private long mObject;
}

从上述序列图中我们可以看出,最终调用Asset的构造函数来创建Asset对象,如下所示:

public final class AssetManager implements AutoCloseable {
      public AssetManager() {
          synchronized (this) {
              if (DEBUG_REFS) {
                  mNumRefs = 0;
                  incRefsLocked(this.hashCode());
              }
              init(false);
              if (localLOGV) Log.v(TAG, "New asset manager: " + this);
              //创建系统的AssetManager
              ensureSystemAssets();
          }
      }
  
      private static void ensureSystemAssets() {
          synchronized (sSync) {
              if (sSystem == null) {
                  AssetManager system = new AssetManager(true);
                  system.makeStringBlocks(null);
                  sSystem = system;
              }
          }
      }
      
      private AssetManager(boolean isSystem) {
          if (DEBUG_REFS) {
              synchronized (this) {
                  mNumRefs = 0;
                  incRefsLocked(this.hashCode());
              }
          }
          init(true);
          if (localLOGV) Log.v(TAG, "New asset manager: " + this);
      }
      
    private native final void init(boolean isSystem);
}

可以看到构造函数会先调用native方法init()去构造初始化AssetManager对象,可以发现它还调用了ensureSystemAssets()方法去创建系统AssetManager,为什么还会有个系统AssetManager呢?🤔

这是因为Android应用程序不仅要访问自己的资源,还需要访问系统的资源,系统的资源放在/system/framework/framework-res.apk文件中,它在应用进程中是通过一个单独的Resources对象(Resources.sSystem) 和一个单独的AssetManger(AssetManager.sSystem)对象来管理的。

我们接着来看native方法init()的实现,它实际上是调用android_util_AssetManager.cpp类的android_content_AssetManager_init()方法,如下所示;

👉 android_util_AssetManager.cpp

static void android_content_AssetManager_init(JNIEnv* env, jobject clazz, jboolean isSystem)
{
    if (isSystem) {
        verifySystemIdmaps();
    }
    //构建AssetManager对象
    AssetManager* am = new AssetManager();
    if (am == NULL) {
        jniThrowException(env, "java/lang/OutOfMemoryError", "");
        return;
    }

    //添加默认的资源路径,也就是系统资源的路径
    am->addDefaultAssets();

    ALOGV("Created AssetManager %p for Java object %p\n", am, clazz);
    env->SetLongField(clazz, gAssetManagerOffsets.mObject, reinterpret_cast<jlong>(am));
}

我们接着来看看AssetManger.cpp的ddDefaultAssets()方法。

👉 AssetManager.cpp

static const char* kSystemAssets = "framework/framework-res.apk";

bool AssetManager::addDefaultAssets()
{
    const char* root = getenv("ANDROID_ROOT");
    LOG_ALWAYS_FATAL_IF(root == NULL, "ANDROID_ROOT not set");

    String8 path(root);
    path.appendPath(kSystemAssets);

    return addAssetPath(path, NULL, false /* appAsLib */, true /* isSystemAsset */);
}

ANDROID_ROOT指的就是/sysetm目录,全局变量kSystemAssets指向的是"framework/framework-res.apk",所以拼接以后就是我们前面说的系统资源的存放目录"/system/framework/framework-res.apk"

拼接好path后作为参数传入addAssetPath()方法,注意Java层的addAssetPath()方法实际调用的也是底层的此方法,如下所示:


static const char* kAppZipName = NULL; //"classes.jar";

bool AssetManager::addAssetPath(
        const String8& path, int32_t* cookie, bool appAsLib, bool isSystemAsset)
{
    AutoMutex _l(mLock);

    asset_path ap;

    String8 realPath(path);
    //kAppZipName如果不为NULL,一般将会被设置为classes.jar
    if (kAppZipName) {
        realPath.appendPath(kAppZipName);
    }
    
    //检查传入的path是一个文件还是一个目录,两者都不是的时候直接返回
    ap.type = ::getFileType(realPath.string());
    if (ap.type == kFileTypeRegular) {
        ap.path = realPath;
    } else {
        ap.path = path;
        ap.type = ::getFileType(path.string());
        if (ap.type != kFileTypeDirectory && ap.type != kFileTypeRegular) {
            ALOGW("Asset path %s is neither a directory nor file (type=%d).",
                 path.string(), (int)ap.type);
            return false;
        }
    }

    //资源路径mAssetPaths是否已经添加过参数path描述的一个APK的文件路径,如果
    //已经添加过,则不再往下处理。直接将path保存在输出参数cookie中
    for (size_t i=0; i<mAssetPaths.size(); i++) {
        if (mAssetPaths[i].path == ap.path) {
            if (cookie) {
                *cookie = static_cast<int32_t>(i+1);
            }
            return true;
        }
    }

    ALOGV("In %p Asset %s path: %s", this,
         ap.type == kFileTypeDirectory ? "dir" : "zip", ap.path.string());

    ap.isSystemAsset = isSystemAsset;
    //path所描述的APK资源路径没有被添加过,则添加到mAssetPaths中。
    mAssetPaths.add(ap);

    //...

    return true;

该方法的实现也很简单,就是把path描述的APK资源路径加入到资源目录数组mAssetsPath中去,mAssetsPath是AssetManger.cpp的成员变量,AssetManger.cpp有三个 比较重要的成员变量:

  • mAssetsPath:资源存放目录。
  • mResources:资源索引表。
  • mConfig:设备的本地配置信息,包括设备大小,国家地区、语音等配置信息。

有了这些变量AssetManger就可以正常的工作了。AssetManger对象也就创建完成了。

ResroucesManager的createResroucesImpl()方法会先调用createAssetManager()方法创建AssetManger对象,然后再调用ResourcesImpl的构造方法创建ResourcesImpl对象。

3.1 Resources的创建流程

Resources对象的创建序列图如下所示:

ResourcesImpl的构造方法如下所示:

public class ResourcesImpl {
   public ResourcesImpl(@NonNull AssetManager assets, @Nullable DisplayMetrics metrics,
            @Nullable Configuration config, @NonNull DisplayAdjustments displayAdjustments) {
        mAssets = assets;
        mMetrics.setToDefaults();
        mDisplayAdjustments = displayAdjustments;
        updateConfiguration(config, metrics, displayAdjustments.getCompatibilityInfo());
        mAssets.ensureStringBlocks();
    }
}

在这个方法里有两个重要的函数:

  • updateConfiguration(config, metrics, displayAdjustments.getCompatibilityInfo()):首先是根据参数config和metrics来更新设备的当前配置信息,例如,屏幕大小和密码、国家地区和语言、键盘 配置情况等,接着再调用成员变量mAssets所指向的一个Java层的AssetManager对象的成员函数setConfiguration来将这些配置信息设置到与之关联的C++层的AssetManger。
  • ensureStringBlocks():读取

我们重点来看看ensureStringBlocks()的实现。

public final class AssetManager implements AutoCloseable {
    
    @NonNull
    final StringBlock[] ensureStringBlocks() {
        synchronized (this) {
            if (mStringBlocks == null) {
                //读取字符串资源池,sSystem.mStringBlocks表示系统资源索引表的字符串常量池
                //前面我们已经创建的了系统资源的AssetManger sSystem,所以系统资源字符串资源池已经读取完毕。
                makeStringBlocks(sSystem.mStringBlocks);
            }
            return mStringBlocks;
        }
    }

    //seed表示是否要将系统资源索引表里的字符串资源池也一起拷贝出来
    /*package*/ final void makeStringBlocks(StringBlock[] seed) {
        //系统资源索引表个数
        final int seedNum = (seed != null) ? seed.length : 0;
        //总的资源索引表个数
        final int num = getStringBlockCount();
        mStringBlocks = new StringBlock[num];
        if (localLOGV) Log.v(TAG, "Making string blocks for " + this
                + ": " + num);
        for (int i=0; i<num; i++) {
            if (i < seedNum) {
                //系统预加载资源的时候,已经解析过framework-res.apk中的resources.arsc
                mStringBlocks[i] = seed[i];
            } else {
                //调用getNativeStringBlock(i)方法读取字符串资源池
                mStringBlocks[i] = new StringBlock(getNativeStringBlock(i), true);
            }
        }
    }
    
    private native final int getStringBlockCount();
    private native final long getNativeStringBlock(int block);
}

首先解释一下什么是StringBlocks,StringBlocks描述的是一个字符串资源池,Android里每一个资源索引表resources.arsc都包含一个字符串资源池。 getStringBlockCount() 方法返回的也就是这种资源池的个数。

上面我们已经说了resources.arsc的文件格式,接下来就会调用native方法getNativeStringBlock()去解析resources.arsc文件的内容,获取字符串 常量池,getNativeStringBlock()方法实际上就是将每一个资源包里面的resources.arsc的数据项值的字符串资源池数据块读取出来,并封装在C++层的StringPool对象中,然后Java层的makeStringBlocks()方法 再将该StringPool对象封装成Java层的StringBlock中。

关于C++层的具体实现,可以参考罗哥的这两篇博客:

如此,AssetManager和Resources对象的创建流程便分析完了,这两个对象构成了Android应用程序资源管理器的核心基础,资源的加载就是借由这两个对象来完成的。

3.3 资源的查找与解析流程

前面我们分析了AssetManager和Resources对象的创建流程,AssetManager根据文件名来查找资源,Resouces根据资源ID查找资源,如果资源ID对应的是个文件,那么会Resouces先根据资源ID查找 出文件名,AssetManger再根据文件名查找出具体的资源。

整个流程还是比较简单的,我们以layout.xml文件的查找流程为例来说明一下,具体序列图如下所示:

我们先来看看总的调度方法inflate(),这个也是我们最常用的

public View inflate(@LayoutRes int resource, @Nullable ViewGroup root, boolean attachToRoot)

这个方法有三个参数:

int resource:布局ID,也就是要解析的xml布局文件,boolean attachToRoot表示是否要添加到父布局root中去。这里面还有个关键的参数root。它用来表示根布局,这个就很常见的,我们在用 这个方法的时候,有时候给root赋值了,有时候直接给了null(给null的时候IDE会有警告提示),这个root到底有什么作用呢?🤔

它主要有两个方面的作用:

  • 当attachToRoot == true且root != null时,新解析出来的View会被add到root中去,然后将root作为结果返回。
  • 当attachToRoot == false且root != null时,新解析的View会直接作为结果返回,而且root会为新解析的View生成LayoutParams并设置到该View中去。
  • 当attachToRoot == false且root == null时,新解析的View会直接作为结果返回。

注意第二条和第三条是由区别的,你可以去写个例子试一下,当root为null时,新解析出来的View没有LayoutParams参数,这时候你设置的layout_width和layout_height是不生效的。

说到这里,有人可能有疑问了,Activity里的布局应该也是LayoutInflater加载的,我也没做什么处理,但是我设置的layout_width和layout_heigh参数都是可以生效的,这是为什么?🤔

这是因为Activity内部做了处理,我们知道Activity的setContentView()方法,实际上调用的PhoneWindow的setContentView()方法。它调用的时候将Activity的顶级DecorView(FrameLayout) 作为root传了进去,mLayoutInflater.inflate(layoutResID, mContentParent)实际调用的是inflate(resource, root, root != null),所以在调用Activity的setContentView()方法时 可以将解析出的View添加到顶级DecorView中,我们设置的layout_width和layout_height参数也可以生效。

具体代码如下:

@Override
public void setContentView(int layoutResID) {
    if (mContentParent == null) {
        installDecor();
    } else if (!hasFeature(FEATURE_CONTENT_TRANSITIONS)) {
        mContentParent.removeAllViews();
    }

    if (hasFeature(FEATURE_CONTENT_TRANSITIONS)) {
        final Scene newScene = Scene.getSceneForLayout(mContentParent, layoutResID,
                getContext());
        transitionTo(newScene);
    } else {
        
        mLayoutInflater.inflate(layoutResID, mContentParent);
    }
    mContentParent.requestApplyInsets();
    final Callback cb = getCallback();
    if (cb != null && !isDestroyed()) {
        cb.onContentChanged();
    }
    mContentParentExplicitlySet = true;
}

了解了inflate()方法各个参数的含义,我们正式来分析它的实现。


public abstract class LayoutInflater {

    public View inflate(@LayoutRes int resource, @Nullable ViewGroup root, boolean attachToRoot) {
        final Resources res = getContext().getResources();
        if (DEBUG) {
            Log.d(TAG, "INFLATING from resource: \"" + res.getResourceName(resource) + "\" ("
                    + Integer.toHexString(resource) + ")");
        }
        
        //获取xml资源解析器XmlResourceParser
        final XmlResourceParser parser = res.getLayout(resource);
        try {
            return inflate(parser, root, attachToRoot);//解析View
        } finally {
            parser.close();
        }
    }
}

可以发现在该方法里,主要完成了两件事情:

  1. 获取xml资源解析器XmlResourceParser。
  2. 解析View

我们先来看看XmlResourceParser是如何获取的。

从上面的序列图可以看出,调用了Resources的getLayout(resource)去获取对应的XmlResourceParser。getLayout(resource)又去调用了Resources的loadXmlResourceParser() 方法来完成XmlResourceParser的加载,如下所示:

public class Resources {
    
     XmlResourceParser loadXmlResourceParser(@AnyRes int id, @NonNull String type)
             throws NotFoundException {
         final TypedValue value = obtainTempTypedValue();
         try {
             final ResourcesImpl impl = mResourcesImpl;
             //1. 获取xml布局资源,并保存在TypedValue中。
             impl.getValue(id, value, true);
             if (value.type == TypedValue.TYPE_STRING) {
                 //2. 加载对应的loadXmlResourceParser解析器。
                 return impl.loadXmlResourceParser(value.string.toString(), id,
                         value.assetCookie, type);
             }
             throw new NotFoundException("Resource ID #0x" + Integer.toHexString(id)
                     + " type #0x" + Integer.toHexString(value.type) + " is not valid");
         } finally {
             releaseTempTypedValue(value);
         }
     }   
}

可以发现这个方法又被分成了两步:

  1. 获取xml布局资源,并保存在TypedValue中。
  2. 加载对应的loadXmlResourceParser解析器。

从上面的序列图可以看出,资源的获取涉及到resources.arsc的解析过程,这个我们已经在Resources的创建流程简单聊过,这里就不再赘述。通过 getValue()方法获取到xml资源以后,就会调用ResourcesImpl的loadXmlResourceParser()方法对该布局资源进行解析,以便得到一个UI布局视图。

我们来看看它的实现。

3.3.1 获取XmlResourceParser

public class ResourcesImpl {
    
    XmlResourceParser loadXmlResourceParser(@NonNull String file, @AnyRes int id, int assetCookie,
               @NonNull String type)
               throws NotFoundException {
           if (id != 0) {
               try {
                   synchronized (mCachedXmlBlocks) {
                       //... 从缓存中查找xml资源
   
                       // Not in the cache, create a new block and put it at
                       // the next slot in the cache.
                       final XmlBlock block = mAssets.openXmlBlockAsset(assetCookie, file);
                       if (block != null) {
                           final int pos = (mLastCachedXmlBlockIndex + 1) % num;
                           mLastCachedXmlBlockIndex = pos;
                           final XmlBlock oldBlock = cachedXmlBlocks[pos];
                           if (oldBlock != null) {
                               oldBlock.close();
                           }
                           cachedXmlBlockCookies[pos] = assetCookie;
                           cachedXmlBlockFiles[pos] = file;
                           cachedXmlBlocks[pos] = block;
                           return block.newParser();
                       }
                   }
               } catch (Exception e) {
                   final NotFoundException rnf = new NotFoundException("File " + file
                           + " from xml type " + type + " resource ID #0x" + Integer.toHexString(id));
                   rnf.initCause(e);
                   throw rnf;
               }
           }
   
           throw new NotFoundException("File " + file + " from xml type " + type + " resource ID #0x"
                   + Integer.toHexString(id));
       } 
}

我们先来看看这个方法的四个形参:

  • String file:xml文件的路径
  • int id:xml文件的资源ID
  • int assetCookie:xml文件的资源缓存
  • String type:资源类型

ResourcesImpl会缓存最近解析的4个xml资源,如果不在缓存里则调用AssetManger的openXmlBlockAsset()方法创建一个XmlBlock。XmlBlock是已编译的xml文件的一个包装类。

AssetManger的openXmlBlockAsset()方法的实现如下所示:

public final class AssetManager implements AutoCloseable {
   /*package*/ final XmlBlock openXmlBlockAsset(int cookie, String fileName)
       throws IOException {
       synchronized (this) {
           //...
           long xmlBlock = openXmlAssetNative(cookie, fileName);
           if (xmlBlock != 0) {
               XmlBlock res = new XmlBlock(this, xmlBlock);
               incRefsLocked(res.hashCode());
               return res;
           }
       }
       //...
   } 
}

可以看出该方法会调用native方法openXmlAssetNative()去代开fileName指定的xml文件,成功打开该文件后,会得到C++层的ResXMLTree对象的地址xmlBlock,然后将xmlBlock封装进 XmlBlock中返回给调用者。ResXMLTreed对象会存放打开后xml资源的内容。

上述序列图里的AssetManger.cpp的方法的具体实现也就是一个打开资源文件的过程,资源文件一般存放在APK中,APK是一个zip包,所以最终会调用openAssetFromZipLocked()方法打开xml文件。

XmlBlock封装完成后,会调用XmlBlock对象的newParser()方法去构建一个XmlResourceParser对象,实现如下所示:

final class XmlBlock {
    public XmlResourceParser newParser() {
        synchronized (this) {
            //mNative指向的是C++层的ResXMLTree对象的地址
            if (mNative != 0) {
                return new Parser(nativeCreateParseState(mNative), this);
            }
            return null;
        }
    }
    
    private static final native long nativeCreateParseState(long obj);
}

mNative指向的是C++层的ResXMLTree对象的地址,native方法nativeCreateParseState()根据这个地址找到ResXMLTree对象,利用ResXMLTree对象对象构建一个ResXMLParser对象,并将ResXMLParser对象 的地址封装进Java层的Parser对象中,构建一个Parser对象。所以他们的对应关系如下所示:

  • XmlBlock <--> ResXMLTree
  • Parser <--> ResXMLParser

就是建立了Java层与C++层的对应关系,实际的实现还是由C++层完成。

等获取了XmlResourceParser对象以后就可以调用inflate(XmlPullParser parser, @Nullable ViewGroup root, boolean attachToRoot) 方法进行View的解析了,在解析View时 ,会先去调用rInflate()方法解析View树,然后再调用createViewFromTag()方法创建具体的View,我们来详细的看一看。

3.3.2 解析View树

  1. 解析merge标签,rInflate()方法会将merge下面的所有子View直接添加到根容器中,这里我们也理解了为什么merge标签可以达到简化布局的效果。
  2. 不是merge标签那么直接调用createViewFromTag()方法解析成布局中的视图,这里的参数name就是要解析视图的类型,例如:ImageView。
  3. 调用generateLayoutParams()f方法生成布局参数,如果attachToRoot为false,即不添加到根容器里,为View设置布局参数。
  4. 调用rInflateChildren()方法解析当前View下面的所有子View。
  5. 如果根容器不为空,且attachToRoot为true,则将解析出来的View添加到根容器中,如果根布局为空或者attachToRoot为false,那么解析出来的额View就是返回结果。返回解析出来的结果。

接下来,我们分别看下View树解析以及View的解析。

public abstract class LayoutInflater {
    
    public View inflate(XmlPullParser parser, @Nullable ViewGroup root, boolean attachToRoot) {
           synchronized (mConstructorArgs) {
               Trace.traceBegin(Trace.TRACE_TAG_VIEW, "inflate");
   
               final Context inflaterContext = mContext;
               final AttributeSet attrs = Xml.asAttributeSet(parser);
               
               //Context对象
               Context lastContext = (Context) mConstructorArgs[0];
               mConstructorArgs[0] = inflaterContext;
               
               //存储根视图
               View result = root;
   
               try {
                   // 获取根元素
                   int type;
                   while ((type = parser.next()) != XmlPullParser.START_TAG &&
                           type != XmlPullParser.END_DOCUMENT) {
                       // Empty
                   }
   
                   if (type != XmlPullParser.START_TAG) {
                       throw new InflateException(parser.getPositionDescription()
                               + ": No start tag found!");
                   }
   
                   final String name = parser.getName();
                   
                   if (DEBUG) {
                       System.out.println("**************************");
                       System.out.println("Creating root view: "
                               + name);
                       System.out.println("**************************");
                   }
   
                   //1. 解析merge标签,rInflate()方法会将merge下面的所有子View直接添加到根容器中,这里
                   //我们也理解了为什么merge标签可以达到简化布局的效果。
                   if (TAG_MERGE.equals(name)) {
                       if (root == null || !attachToRoot) {
                           throw new InflateException("<merge /> can be used only with a valid "
                                   + "ViewGroup root and attachToRoot=true");
                       }
   
                       rInflate(parser, root, inflaterContext, attrs, false);
                   } else {
                       //2. 不是merge标签那么直接调用createViewFromTag()方法解析成布局中的视图,这里的参数name就是要解析视图的类型,例如:ImageView
                       final View temp = createViewFromTag(root, name, inflaterContext, attrs);
   
                       ViewGroup.LayoutParams params = null;
   
                       if (root != null) {
                           if (DEBUG) {
                               System.out.println("Creating params from root: " +
                                       root);
                           }
                           //3. 调用generateLayoutParams()f方法生成布局参数,如果attachToRoot为false,即不添加到根容器里,为View设置布局参数
                           params = root.generateLayoutParams(attrs);
                           if (!attachToRoot) {
                               // Set the layout params for temp if we are not
                               // attaching. (If we are, we use addView, below)
                               temp.setLayoutParams(params);
                           }
                       }
   
                       if (DEBUG) {
                           System.out.println("-----> start inflating children");
                       }
   
                       //4. 调用rInflateChildren()方法解析当前View下面的所有子View
                       rInflateChildren(parser, temp, attrs, true);
   
                       if (DEBUG) {
                           System.out.println("-----> done inflating children");
                       }
   
                       //如果根容器不为空,且attachToRoot为true,则将解析出来的View添加到根容器中
                       if (root != null && attachToRoot) {
                           root.addView(temp, params);
                       }
   
                       //如果根布局为空或者attachToRoot为false,那么解析出来的额View就是返回结果
                       if (root == null || !attachToRoot) {
                           result = temp;
                       }
                   }
   
               } catch (XmlPullParserException e) {
                   final InflateException ie = new InflateException(e.getMessage(), e);
                   ie.setStackTrace(EMPTY_STACK_TRACE);
                   throw ie;
               } catch (Exception e) {
                   final InflateException ie = new InflateException(parser.getPositionDescription()
                           + ": " + e.getMessage(), e);
                   ie.setStackTrace(EMPTY_STACK_TRACE);
                   throw ie;
               } finally {
                   // Don't retain static reference on context.
                   mConstructorArgs[0] = lastContext;
                   mConstructorArgs[1] = null;
   
                   Trace.traceEnd(Trace.TRACE_TAG_VIEW);
               }
   
               return result;
           }
     }
}

上面我们已经提到View树的解析是有rInflate()方法来完成的,我们接着来看看View树是如何被解析的。

public abstract class LayoutInflater {
    
    void rInflate(XmlPullParser parser, View parent, Context context,
            AttributeSet attrs, boolean finishInflate) throws XmlPullParserException, IOException {

        //1. 获取树的深度,执行深度优先遍历
        final int depth = parser.getDepth();
        int type;

        //2. 逐个进行元素解析
        while (((type = parser.next()) != XmlPullParser.END_TAG ||
                parser.getDepth() > depth) && type != XmlPullParser.END_DOCUMENT) {

            if (type != XmlPullParser.START_TAG) {
                continue;
            }

            final String name = parser.getName();
            
            if (TAG_REQUEST_FOCUS.equals(name)) {
                //3. 解析添加ad:focusable="true"的元素,并获取View焦点。
                parseRequestFocus(parser, parent);
            } else if (TAG_TAG.equals(name)) {
                //4. 解析View的tag。
                parseViewTag(parser, parent, attrs);
            } else if (TAG_INCLUDE.equals(name)) {
                //5. 解析include标签,注意include标签不能作为根元素。
                if (parser.getDepth() == 0) {
                    throw new InflateException("<include /> cannot be the root element");
                }
                parseInclude(parser, context, parent, attrs);
            } else if (TAG_MERGE.equals(name)) {
                //merge标签必须为根元素
                throw new InflateException("<merge /> must be the root element");
            } else {
                //6. 根据元素名进行解析,生成View。
                final View view = createViewFromTag(parent, name, context, attrs);
                final ViewGroup viewGroup = (ViewGroup) parent;
                final ViewGroup.LayoutParams params = viewGroup.generateLayoutParams(attrs);
                //7. 递归调用解析该View里的所有子View,也是深度优先遍历,rInflateChildren内部调用的也是rInflate()方
                //法,只是传入了新的parent View
                rInflateChildren(parser, view, attrs, true);
                //8. 将解析出来的View添加到它的父View中。
                viewGroup.addView(view, params);
            }
        }

        if (finishInflate) {
            //9. 回调根容器的onFinishInflate()方法,这个方法我们应该很熟悉。
            parent.onFinishInflate();
        }
    }
    
    //rInflateChildren内部调用的也是rInflate()方法,只是传入了新的parent View
    final void rInflateChildren(XmlPullParser parser, View parent, AttributeSet attrs,
            boolean finishInflate) throws XmlPullParserException, IOException {
        rInflate(parser, parent, parent.getContext(), attrs, finishInflate);
    }

}

上述方法描述了整个View树的解析流程,我们来概括一下:

  1. 获取树的深度,执行深度优先遍历.
  2. 逐个进行元素解析。
  3. 解析添加ad:focusable="true"的元素,并获取View焦点。
  4. 解析View的tag。
  5. 解析include标签,注意include标签不能作为根元素,而merge必须作为根元素。
  6. 根据元素名进行解析,生成View。
  7. 递归调用解析该View里的所有子View,也是深度优先遍历,rInflateChildren内部调用的也是rInflate()方法,只是传入了新的parent View。
  8. 将解析出来的View添加到它的父View中。
  9. 回调根容器的onFinishInflate()方法,这个方法我们应该很熟悉。

你可以看到,负责解析单个View的正是createViewFromTag()方法,我们再来分析下这个方法。

3.3.3 创建View

public abstract class LayoutInflater {

        View createViewFromTag(View parent, String name, Context context, AttributeSet attrs,
                boolean ignoreThemeAttr) {
            
            //1. 解析view标签。注意是小写view,这个不太常用,下面会说。
            if (name.equals("view")) {
                name = attrs.getAttributeValue(null, "class");
            }
    
            //2. 如果标签与主题相关,则需要将context与themeResId包裹成ContextThemeWrapper。
            if (!ignoreThemeAttr) {
                final TypedArray ta = context.obtainStyledAttributes(attrs, ATTRS_THEME);
                final int themeResId = ta.getResourceId(0, 0);
                if (themeResId != 0) {
                    context = new ContextThemeWrapper(context, themeResId);
                }
                ta.recycle();
            }
    
            //3. BlinkLayout是一种会闪烁的布局,被包裹的内容会一直闪烁,像QQ消息那样。
            if (name.equals(TAG_1995)) {
                // Let's party like it's 1995!
                return new BlinkLayout(context, attrs);
            }
    
            try {
                View view;
                
                //4. 用户可以设置LayoutInflater的Factory来进行View的解析,但是默认情况下
                //这些Factory都是为空的。
                if (mFactory2 != null) {
                    view = mFactory2.onCreateView(parent, name, context, attrs);
                } else if (mFactory != null) {
                    view = mFactory.onCreateView(name, context, attrs);
                } else {
                    view = null;
                }
                if (view == null && mPrivateFactory != null) {
                    view = mPrivateFactory.onCreateView(parent, name, context, attrs);
                }
    
                //5. 默认情况下没有Factory,而是通过onCreateView()方法对内置View进行解析,createView()
                //方法进行自定义View的解析。
                if (view == null) {
                    final Object lastContext = mConstructorArgs[0];
                    mConstructorArgs[0] = context;
                    try {
                        //这里有个小技巧,因为我们在使用自定义View的时候是需要在xml指定全路径的,例如:
                        //com.qmsggg.CustomView,那么这里就有个.了,可以利用这一点判定是内置View
                        //还是自定义View,Google的工程师很机智的。😎
                        if (-1 == name.indexOf('.')) {
                            //内置View解析
                            view = onCreateView(parent, name, attrs);
                        } else {
                            //自定义View解析
                            view = createView(name, null, attrs);
                        }
                    } finally {
                        mConstructorArgs[0] = lastContext;
                    }
                }
    
                return view;
            } catch (InflateException e) {
                throw e;
    
            } catch (ClassNotFoundException e) {
                final InflateException ie = new InflateException(attrs.getPositionDescription()
                        + ": Error inflating class " + name, e);
                ie.setStackTrace(EMPTY_STACK_TRACE);
                throw ie;
    
            } catch (Exception e) {
                final InflateException ie = new InflateException(attrs.getPositionDescription()
                        + ": Error inflating class " + name, e);
                ie.setStackTrace(EMPTY_STACK_TRACE);
                throw ie;
            }
        }
}

单个View的解析流程也很简单,我们来梳理一下:

  1. 解析View标签。
  2. 如果标签与主题相关,则需要将context与themeResId包裹成ContextThemeWrapper。
  3. BlinkLayout是一种会闪烁的布局,被包裹的内容会一直闪烁,像QQ消息那样。
  4. 用户可以设置LayoutInflater的Factory来进行View的解析,但是默认情况下这些Factory都是为空的。
  5. 默认情况下没有Factory,而是通过onCreateView()方法对内置View进行解析,createView()方法进行自定义View的解析。这里有个小技巧,因为 我们在使用自定义View的时候是需要在xml指定全路径的,例如:com.qmsggg.CustomView,那么这里就有个.了,可以利用这一点判定是内置View 还是自定义View,Google的工程师很机智的。😎

关于view标签

<view
    class="RelativeLayout"
    android:layout_width="match_parent"
    android:layout_height="match_parent"/>

在使用时,相当于所有控件标签的父类一样,可以设置class属性,这个属性会决定view这个节点会是什么控件。

关于BlinkLayout

这个也是个冷门的控件,本质上是一个FrameLayout,被它包裹的控件会像电脑版的QQ小企鹅那样一直闪烁。

<blink
    android:layout_width="wrap_content"
    android:layout_height="wrap_content">

    <TextView
        android:layout_width="wrap_content"
        android:layout_height="wrap_content"
        android:text="这个控件会一直闪烁"/>

</blink>

关于onCreateView()与createView()

这两个方法在本质上都是一样的,只是onCreateView()会给内置的View前面加一个前缀,例如:android.widget,方便开发者在写内置View的时候,不用谢全路径名。 前面我们也提到了LayoutInflater是一个抽象类,我们实际使用的PhoneLayoutInflater,这个类的实现很简单,它重写了LayoutInflater的onCreatView()方法,该 方法就是做了一个给内置View加前缀的事情。

public class PhoneLayoutInflater extends LayoutInflater {
    private static final String[] sClassPrefixList = {
        "android.widget.",
        "android.webkit.",
        "android.app."
    };

    @Override protected View onCreateView(String name, AttributeSet attrs) throws ClassNotFoundException {
        
        //循环遍历三种前缀,尝试创建View
        for (String prefix : sClassPrefixList) {
            try {
                View view = createView(name, prefix, attrs);
                if (view != null) {
                    return view;
                }
            } catch (ClassNotFoundException e) {
                // In this case we want to let the base class take a crack
                // at it.
            }
        }
        return super.onCreateView(name, attrs);
    }
    public LayoutInflater cloneInContext(Context newContext) {
        return new PhoneLayoutInflater(this, newContext);
    }
}

这样一来,真正的View构建还是在createView()方法里完成的,createView()主要根据完整的类的路径名利用反射机制构建View对象,我们具体来 看看createView()方法的实现。

public abstract class LayoutInflater {
    
    public final View createView(String name, String prefix, AttributeSet attrs)
                throws ClassNotFoundException, InflateException {
        
            //1. 从缓存中读取构造函数。
            Constructor<? extends View> constructor = sConstructorMap.get(name);
            if (constructor != null && !verifyClassLoader(constructor)) {
                constructor = null;
                sConstructorMap.remove(name);
            }
            Class<? extends View> clazz = null;
    
            try {
                Trace.traceBegin(Trace.TRACE_TAG_VIEW, name);
    
                if (constructor == null) {
                    // Class not found in the cache, see if it's real, and try to add it
                    
                    //2. 没有在缓存中查找到构造函数,则构造完整的路径名,并加装该类。
                    clazz = mContext.getClassLoader().loadClass(
                            prefix != null ? (prefix + name) : name).asSubclass(View.class);
                    
                    if (mFilter != null && clazz != null) {
                        boolean allowed = mFilter.onLoadClass(clazz);
                        if (!allowed) {
                            failNotAllowed(name, prefix, attrs);
                        }
                    }
                    //3. 从Class对象中获取构造函数,并在sConstructorMap做下缓存,方便下次使用。
                    constructor = clazz.getConstructor(mConstructorSignature);
                    constructor.setAccessible(true);
                    sConstructorMap.put(name, constructor);
                } else {
                    //4. 如果sConstructorMap中有当前View构造函数的缓存,则直接使用。
                    if (mFilter != null) {
                        // Have we seen this name before?
                        Boolean allowedState = mFilterMap.get(name);
                        if (allowedState == null) {
                            // New class -- remember whether it is allowed
                            clazz = mContext.getClassLoader().loadClass(
                                    prefix != null ? (prefix + name) : name).asSubclass(View.class);
                            
                            boolean allowed = clazz != null && mFilter.onLoadClass(clazz);
                            mFilterMap.put(name, allowed);
                            if (!allowed) {
                                failNotAllowed(name, prefix, attrs);
                            }
                        } else if (allowedState.equals(Boolean.FALSE)) {
                            failNotAllowed(name, prefix, attrs);
                        }
                    }
                }
    
                Object[] args = mConstructorArgs;
                args[1] = attrs;
    
                //5. 利用构造函数,构建View对象。
                final View view = constructor.newInstance(args);
                if (view instanceof ViewStub) {
                    // Use the same context when inflating ViewStub later.
                    final ViewStub viewStub = (ViewStub) view;
                    viewStub.setLayoutInflater(cloneInContext((Context) args[0]));
                }
                return view;
    
            } catch (NoSuchMethodException e) {
                final InflateException ie = new InflateException(attrs.getPositionDescription()
                        + ": Error inflating class " + (prefix != null ? (prefix + name) : name), e);
                ie.setStackTrace(EMPTY_STACK_TRACE);
                throw ie;
    
            } catch (ClassCastException e) {
                // If loaded class is not a View subclass
                final InflateException ie = new InflateException(attrs.getPositionDescription()
                        + ": Class is not a View " + (prefix != null ? (prefix + name) : name), e);
                ie.setStackTrace(EMPTY_STACK_TRACE);
                throw ie;
            } catch (ClassNotFoundException e) {
                // If loadClass fails, we should propagate the exception.
                throw e;
            } catch (Exception e) {
                final InflateException ie = new InflateException(
                        attrs.getPositionDescription() + ": Error inflating class "
                                + (clazz == null ? "<unknown>" : clazz.getName()), e);
                ie.setStackTrace(EMPTY_STACK_TRACE);
                throw ie;
            } finally {
                Trace.traceEnd(Trace.TRACE_TAG_VIEW);
            }
        }   
}

好了,讲到这里一个布局xml资源文件的查找和解析流程就分析完了。

qmsggg avatar Mar 02 '18 20:03 qmsggg