qidiso

Results 28 comments of qidiso

thanks @moli232777144 .i try it

samples/sec acc=0.366797 INFO:root:Epoch[33] Batch [11280] Speed: 861.70 samples/sec acc=0.361328 INFO:root:Epoch[33] Batch [11300] Speed: 864.48 samples/sec acc=0.368750 INFO:root:Epoch[33] Batch [11320] Speed: 871.56 samples/sec acc=0.372070 INFO:root:Epoch[33] Batch [11340] Speed: 866.92 samples/sec acc=0.361914...

[lfw][530000]Accuracy-Flip: 0.99000+-0.00459 testing verification.. (14000, 128) infer time 14.187055 [cfp_fp][530000]XNorm: 9.111494 [cfp_fp][530000]Accuracy-Flip: 0.84843+-0.01903 testing verification.. (12000, 128) infer time 12.007815 [agedb_30][530000]XNorm: 10.877945 [agedb_30][530000]Accuracy-Flip: 0.93417+-0.01218 saving 265 INFO:root:Saved checkpoint to "../models/MobileFaceNet/model-y1-arcface-0265.params"...

i feel my result is more bad. i use cmd: CUDA_VISIBLE_DEVICES='0,1' python -u train_softmax.py --network y1 --ckpt 2 --loss-type 4 --lr-steps 160000,240000,280000,320000 --emb-size 128 --per-batch-size 128 --data-dir ../data/faces_ms1m_112x112 --pretrained ../models/MobileFaceNet/model-y1-softmax,20...

@moli232777144 me too! now i train again just use cmd: CUDA_VISIBLE_DEVICES='0,1' python -u train_softmax.py --network y1 --loss-type 4 --margin-m 0.5 --data-dir ../data/faces_ms1m_112x112 --pretrained ../models/MobileFaceNet/model-y1-softmax,28 --prefix ../models/MobileFaceNet/model-y1-arcface --emb-size 128 --per-batch-size 150...

can you share me first step softmax result models?

i find i can get 99.37% in lfw on the 40000 steps ,but i train 70000 steps ,i can get only 99.1% in lfw.maybe we should set lr =0.01 in...

@moli232777144 i try it .if i get goods result ,i will reports the log

not good result .i get 99.45 in lfw and 94.50 in agedb ,so it can't be higher.