vision
vision copied to clipboard
`NEAREST_EXACT` and `BICUBIC` work against the doc of `RandAugment()`
🐛 Describe the bug
The doc of RandAugment() says that only NEAREST and BILINEAR are supported:
Parameters: ...
- interpolation (InterpolationMode, optional) – ... If input is Tensor, only InterpolationMode.NEAREST, InterpolationMode.BILINEAR are supported.
But NEAREST_EXACT and BICUBIC work against the doc as shown below:
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandAugment, PILToTensor
origin_data = OxfordIIITPet(
root="data"
)
def show_raimagetensor(im, ip=None):
ra = RandAugment(interpolation=ip)
ptt = PILToTensor()
print(ptt(ra(im))[0][200])
show_raimagetensor(im=origin_data[0][0], ip=InterpolationMode.NEAREST_EXACT)
# tensor([ 29, 29, 29, 29, 28, 29, 30, 30, 30, 30,
# 30, 31, 27, 28, 28, 28, 29, 28, 28, 29,
# 29, 26, 28, 29, 29, ..., 29, 26, 26], dtype=torch.uint8)
show_raimagetensor(im=origin_data[0][0], ip=InterpolationMode.BICUBIC)
# tensor([249, 248, 247, 245, 242, 241, 241, 237, 235, 239,
# 237, 239, 238, 229, 231, 229, 234, 238, 240, 246,
# 248, 244, 246, 245, 246, ..., 250, 247, 247], dtype=torch.uint8)
Versions
import torchvision
torchvision.__version__ # '0.20.1'
Hey @hyperkai, thank you for opening this issue. After reviewing the details, I suggest we consolidate the discussion with #9065, as it appears to be closely related.
Feel free to submit a PR to clarify the docs @hyperkai .