Setting a float value to `magnitude` argument of `RandAugment()` gets the wrong error message
🐛 Describe the bug
Setting a float value to magnitude argument of RandAugment() gets the wrong error message as shown below:
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandAugment
my_data = OxfordIIITPet(
root="data",
transform=RandAugment(magnitude=3.5)
)
my_data[0] # Error
IndexError: only integers, slices (
:), ellipsis (...), None and long or byte Variables are valid indices (got float)
But setting None to magnitude argument doesn't work as shown below so the wrong error message above should be corrected:
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandAugment
my_data = OxfordIIITPet(
root="data",
transform=RandAugment(magnitude=None)
)
my_data[0] # Error
ValueError: only one element tensors can be converted to Python scalars
In addition, setting a list of one element to magnitude argument works as shown below but it's useless so magnitude argument should only accept int but not list(int):
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandAugment
my_data = OxfordIIITPet(
root="data",
transform=RandAugment(magnitude=[3])
)
my_data[0]
# (<PIL.Image.Image image mode=RGB size=394x500>, 0)
Versions
import torchvision
torchvision.__version__ # '0.20.1'
The docs are clear that this should be an int, but I guess we can enforce a stricter input check to enforce an int >= 0. Feel free to submit a PR