examples
examples copied to clipboard
The Volatile GPU-Util is always 0, in examples/imagenet
I run the example of imagenet in https://github.com/pytorch/examples/tree/master/imagenet, althougt I can run it successfully, but it is slow, and the Volatile GPU-Util is always 0 with command 'nvidia-smi'
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 390.87 Driver Version: 390.87 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 108... Off | 00000000:01:00.0 On | N/A |
| 31% 58C P2 70W / 250W | 9584MiB / 11170MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 947 G /usr/lib/xorg/Xorg 285MiB |
| 0 1752 G compiz 154MiB |
| 0 1930 G fcitx-qimpanel 9MiB |
| 0 4690 G ...quest-channel-token=4115043597718524916 72MiB |
| 0 26519 C python 9057MiB |
+-----------------------------------------------------------------------------+
did you try increasing the num-workers ? maybe something like 16 ?
did you try increasing the num-workers ? maybe something like 16 ?
Yes, I have tried, but it doesn't work.
what is the batch size that u r using ?
what is the batch size that u r using ?
256
I sort of had the same problem but increasing the batch size and num workers did the trick for me
so what is the num-workers and batch-size you set?
i set the batch size to something around 500 and num_workers as 16
Given that the power consumption is 70W, I would say the GPU is actually computing. I think is a bug of nvidia-smi, and I have the same behaviour.
I run the example of imagenet in https://github.com/pytorch/examples/tree/master/imagenet, althougt I can run it successfully, but it is slow, and the Volatile GPU-Util is always 0 with command 'nvidia-smi'
+-----------------------------------------------------------------------------+ | NVIDIA-SMI 390.87 Driver Version: 390.87 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 GeForce GTX 108... Off | 00000000:01:00.0 On | N/A | | 31% 58C P2 70W / 250W | 9584MiB / 11170MiB | 0% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | 0 947 G /usr/lib/xorg/Xorg 285MiB | | 0 1752 G compiz 154MiB | | 0 1930 G fcitx-qimpanel 9MiB | | 0 4690 G ...quest-channel-token=4115043597718524916 72MiB | | 0 26519 C python 9057MiB | +-----------------------------------------------------------------------------+
Hello, perhaps you know how to download the ImageNet dataset for this program to use? Please tell me, thank you very much!
Does anyone solve this problem?