examples icon indicating copy to clipboard operation
examples copied to clipboard

Imagenet training extremely low gpu utilization

Open twangnh opened this issue 7 years ago • 2 comments

As pointed out in https://github.com/pytorch/examples/issues/164, the imagenet training gets almost zero gpu utilization, I'm using python main.py -a resnet18 /home/wangtao/imagenet/ILSVRC/Data/CLS-LOC

Epoch: [0][1760/5005]   Time 1.599 (2.648)      Data 1.296 (2.388)      Loss 5.6502 (6.3792)    Prec@1 6.250 (1.374)    Prec@5 14.844 (4.918)
Epoch: [0][1770/5005]   Time 0.238 (2.654)      Data 0.001 (2.393)      Loss 5.5388 (6.3752)    Prec@1 3.906 (1.388)    Prec@5 13.281 (4.957)
Epoch: [0][1780/5005]   Time 0.222 (2.652)      Data 0.001 (2.391)      Loss 5.6422 (6.3714)    Prec@1 4.688 (1.402)    Prec@5 12.109 (4.997)
Epoch: [0][1790/5005]   Time 2.700 (2.649)      Data 2.383 (2.389)      Loss 5.7257 (6.3679)    Prec@1 4.297 (1.417)    Prec@5 12.109 (5.038)
Epoch: [0][1800/5005]   Time 1.066 (2.648)      Data 0.849 (2.388)      Loss 5.6143 (6.3641)    Prec@1 3.516 (1.430)    Prec@5 12.891 (5.078)
Epoch: [0][1810/5005]   Time 0.297 (2.654)      Data 0.001 (2.393)      Loss 5.7683 (6.3606)    Prec@1 2.734 (1.443)    Prec@5 11.719 (5.119)
Epoch: [0][1820/5005]   Time 0.218 (2.652)      Data 0.001 (2.392)      Loss 5.8934 (6.3568)    Prec@1 2.344 (1.454)    Prec@5 7.812 (5.158)
Epoch: [0][1830/5005]   Time 2.469 (2.650)      Data 2.126 (2.389)      Loss 5.5614 (6.3530)    Prec@1 4.297 (1.469)    Prec@5 16.797 (5.204)
Epoch: [0][1840/5005]   Time 0.326 (2.648)      Data 0.098 (2.388)      Loss 5.8356 (6.3492)    Prec@1 2.734 (1.486)    Prec@5 10.938 (5.248)
Epoch: [0][1850/5005]   Time 0.235 (2.652)      Data 0.001 (2.392)      Loss 5.5058 (6.3454)    Prec@1 6.250 (1.500)    Prec@5 14.453 (5.284)
Epoch: [0][1860/5005]   Time 0.224 (2.648)      Data 0.001 (2.388)      Loss 5.6114 (6.3415)    Prec@1 3.906 (1.517)    Prec@5 13.281 (5.331)
Epoch: [0][1870/5005]   Time 3.704 (2.646)      Data 3.464 (2.387)      Loss 5.6540 (6.3380)    Prec@1 3.125 (1.528)    Prec@5 11.719 (5.370)
/home/wangtao/anaconda2/envs/tensorflow_/lib/python2.7/site-packages/PIL/TiffImagePlugin.py:764: UserWarning: Corrupt EXIF data.  Expecting to read 4 bytes but only got 0. 
  warnings.warn(str(msg))
Epoch: [0][1880/5005]   Time 0.279 (2.642)      Data 0.001 (2.382)      Loss 5.4274 (6.3344)    Prec@1 3.906 (1.540)    Prec@5 14.453 (5.410)
Epoch: [0][1890/5005]   Time 0.251 (2.646)      Data 0.002 (2.386)      Loss 5.6548 (6.3304)    Prec@1 4.688 (1.559)    Prec@5 12.109 (5.457)
Epoch: [0][1900/5005]   Time 0.232 (2.643)      Data 0.001 (2.384)      Loss 5.6261 (6.3268)    Prec@1 8.984 (1.577)    Prec@5 15.234 (5.500)
Epoch: [0][1910/5005]   Time 6.258 (2.642)      Data 6.032 (2.382)      Loss 5.7049 (6.3234)    Prec@1 3.516 (1.593)    Prec@5 12.500 (5.539)
Epoch: [0][1920/5005]   Time 0.238 (2.638)      Data 0.001 (2.378)      Loss 5.5728 (6.3198)    Prec@1 1.172 (1.604)    Prec@5 11.328 (5.576)
Epoch: [0][1930/5005]   Time 0.320 (2.642)      Data 0.001 (2.383)      Loss 5.4732 (6.3161)    Prec@1 8.984 (1.618)    Prec@5 17.578 (5.615)
Epoch: [0][1940/5005]   Time 0.220 (2.640)      Data 0.001 (2.380)      Loss 5.5701 (6.3121)    Prec@1 4.688 (1.635)    Prec@5 16.797 (5.661)
Epoch: [0][1950/5005]   Time 0.285 (2.635)      Data 0.001 (2.376)      Loss 5.5285 (6.3086)    Prec@1 6.250 (1.650)    Prec@5 14.453 (5.698)
Epoch: [0][1960/5005]   Time 0.221 (2.633)      Data 0.001 (2.374)      Loss 5.3744 (6.3045)    Prec@1 6.250 (1.667)    Prec@5 18.750 (5.740)
Epoch: [0][1970/5005]   Time 0.283 (2.638)      Data 0.001 (2.379)      Loss 5.6604 (6.3011)    Prec@1 4.297 (1.680)    Prec@5 13.281 (5.781)
Epoch: [0][1980/5005]   Time 0.220 (2.636)      Data 0.001 (2.377)      Loss 5.5954 (6.2976)    Prec@1 3.906 (1.693)    Prec@5 15.234 (5.820)
Epoch: [0][1990/5005]   Time 0.226 (2.632)      Data 0.001 (2.373)      Loss 5.6544 (6.2938)    Prec@1 4.297 (1.709)    Prec@5 12.500 (5.862)
Epoch: [0][2000/5005]   Time 0.659 (2.629)      Data 0.375 (2.371)      Loss 5.5378 (6.2900)    Prec@1 3.906 (1.729)    Prec@5 16.406 (5.909)
Epoch: [0][2010/5005]   Time 0.245 (2.634)      Data 0.001 (2.376)      Loss 5.5171 (6.2864)    Prec@1 3.906 (1.745)    Prec@5 13.281 (5.950)
Epoch: [0][2020/5005]   Time 0.230 (2.630)      Data 0.001 (2.372)      Loss 5.4883 (6.2826)    Prec@1 5.469 (1.761)    Prec@5 15.234 (5.998)
Epoch: [0][2030/5005]   Time 0.225 (2.628)      Data 0.001 (2.370)      Loss 5.5814 (6.2790)    Prec@1 2.734 (1.777)    Prec@5 12.500 (6.044)
Epoch: [0][2040/5005]   Time 0.234 (2.626)      Data 0.001 (2.367)      Loss 5.4643 (6.2754)    Prec@1 7.422 (1.792)    Prec@5 15.625 (6.084)
Epoch: [0][2050/5005]   Time 0.296 (2.632)      Data 0.001 (2.374)      Loss 5.5963 (6.2717)    Prec@1 6.250 (1.807)    Prec@5 14.844 (6.127)
Epoch: [0][2060/5005]   Time 0.231 (2.628)      Data 0.001 (2.370)      Loss 5.6223 (6.2683)    Prec@1 3.906 (1.822)    Prec@5 11.719 (6.165)
Epoch: [0][2070/5005]   Time 0.293 (2.626)      Data 0.001 (2.368)      Loss 5.6465 (6.2651)    Prec@1 4.688 (1.832)    Prec@5 12.109 (6.204)
Epoch: [0][2080/5005]   Time 0.260 (2.622)      Data 0.002 (2.364)      Loss 5.5126 (6.2617)    Prec@1 5.469 (1.848)    Prec@5 14.453 (6.243)
Epoch: [0][2090/5005]   Time 0.272 (2.629)      Data 0.002 (2.370)      Loss 5.5466 (6.2584)    Prec@1 5.078 (1.863)    Prec@5 13.672 (6.283)
Epoch: [0][2100/5005]   Time 0.218 (2.626)      Data 0.001 (2.368)      Loss 5.4685 (6.2547)    Prec@1 3.516 (1.881)    Prec@5 16.797 (6.328)
Epoch: [0][2110/5005]   Time 0.251 (2.624)      Data 0.001 (2.366)      Loss 5.4764 (6.2512)    Prec@1 4.297 (1.893)    Prec@5 16.016 (6.368)
Epoch: [0][2120/5005]   Time 0.296 (2.620)      Data 0.001 (2.362)      Loss 5.7063 (6.2478)    Prec@1 2.344 (1.911)    Prec@5 14.062 (6.413)
Epoch: [0][2130/5005]   Time 0.261 (2.625)      Data 0.001 (2.367)      Loss 5.5580 (6.2445)    Prec@1 6.250 (1.924)    Prec@5 13.672 (6.451)
Epoch: [0][2140/5005]   Time 0.263 (2.623)      Data 0.002 (2.365)      Loss 5.5810 (6.2409)    Prec@1 3.516 (1.941)    Prec@5 12.891 (6.494)
Epoch: [0][2150/5005]   Time 0.236 (2.619)      Data 0.001 (2.361)      Loss 5.6755 (6.2378)    Prec@1 5.078 (1.955)    Prec@5 14.062 (6.532)
Epoch: [0][2160/5005]   Time 0.221 (2.617)      Data 0.001 (2.359)      Loss 5.7032 (6.2345)    Prec@1 3.906 (1.970)    Prec@5 10.547 (6.568)
Epoch: [0][2170/5005]   Time 0.286 (2.622)      Data 0.002 (2.364)      Loss 5.5394 (6.2312)    Prec@1 3.516 (1.985)    Prec@5 13.672 (6.611)
Epoch: [0][2180/5005]   Time 0.245 (2.618)      Data 0.002 (2.360)      Loss 5.4341 (6.2276)    Prec@1 9.766 (2.000)    Prec@5 18.359 (6.653)

twangnh avatar Jul 14 '18 07:07 twangnh

Your dataloaders are taking up the bulk of the running time. It's likely that you are not assigning enough CPUs for the workers. Try e.g. at least 32 CPUs for 8 GPUs and 8 workers.

hongyi-zhang avatar Aug 11 '18 20:08 hongyi-zhang

the same problem that dataloader time is unstable. How did you finally solve it?

Jzz24 avatar Mar 20 '19 14:03 Jzz24