CausalPy
CausalPy copied to clipboard
Double check posterior predictions for counterfactual / "test set" data
Check how we call pm.sample_posterior_predictive
in ModelBuilder.predict
.
https://github.com/pymc-labs/CausalPy/blob/e011c9de204d2b3fbb8d31480faa11d53553956d/causalpy/pymc_models.py#L32-L39
More specifically,
- Do we need to use the kwarg
predictions=True
? - And should we store these predictions in
idata
, rather than a separate inferencedata objectpost_pred
?