xarray icon indicating copy to clipboard operation
xarray copied to clipboard

Control CF-encoding in to_zarr()

Open forman opened this issue 4 years ago • 3 comments

Is your feature request related to a problem? Please describe.

I believe, xarray's dataset.to_zarr() is somewhat inconsitent between creating variables and appending data to existing variables: When creating variables it can deal with writing already encoded data. When appending, it expects decoded data.

When appending data, xarray will always CF-encode variable data according to encoding information of existing variables before it appends new data. This is fine if data to be appended is decoded, but if the data to be appended is already encoded (e.g. because it was previously read by dataset = xr.open_dataset(..., decode_cf=False)) then this leads to entirely corrupt data.

See also xarray issue #5263 and my actual problem described in https://github.com/bcdev/nc2zarr/issues/35.

Describe the solution you'd like

A possible hack is to redundantly use dataset = decode_cf(dataset) before appending so encoding it again is finally a no-op, as described in #5263. This of course also costs extra CPU for a useless computation.

I'd like to control whether encoding of data shall take place when appending. If I already have encoded data, I'd like to call encoded_dataset.to_zarr(..., append_dim='time', encode_cf=False).

For example, when I uncomment line 469 in xarray/backends/zarr.py, then this fixes this issue too:

https://github.com/pydata/xarray/blob/1b4412eeb7011f53932779e1d7c3534163aedd63/xarray/backends/zarr.py#L460-L471

Minimal Complete Verifiable Example:

Here is a test that explains the observed inconsistency.

import shutil
import unittest

import numpy as np
import xarray as xr
import zarr

SRC_DS_1_PATH = 'src_ds_1.zarr'
SRC_DS_2_PATH = 'src_ds_2.zarr'
DST_DS_PATH = 'dst_ds.zarr'


class XarrayToZarrAppendInconsistencyTest(unittest.TestCase):
    @classmethod
    def del_paths(cls):
        for path in (SRC_DS_1_PATH, SRC_DS_2_PATH, DST_DS_PATH):
            shutil.rmtree(path, ignore_errors=True)

    def setUp(self):
        self.del_paths()

        scale_factor = 0.0001
        self.v_values_encoded = np.array([[0, 10000, 15000, 20000]], dtype=np.uint16)
        self.v_values_decoded = np.array([[np.nan, 1., 1.5, 2.]], dtype=np.float32)

        # The variable for the two source datasets
        v = xr.DataArray(self.v_values_encoded,
                         dims=('t', 'x'),
                         attrs=dict(scale_factor=scale_factor, _FillValue=0))

        # Create two source datasets
        src_ds = xr.Dataset(data_vars=dict(v=v))
        src_ds.to_zarr(SRC_DS_1_PATH)
        src_ds.to_zarr(SRC_DS_2_PATH)

        # Assert we have written encoded data
        a1 = zarr.convenience.open_array(SRC_DS_1_PATH + '/v')
        a2 = zarr.convenience.open_array(SRC_DS_2_PATH + '/v')
        np.testing.assert_equal(a1, self.v_values_encoded)  # succeeds
        np.testing.assert_equal(a2, self.v_values_encoded)  # succeeds

        # Assert we correctly decode data
        src_ds_1 = xr.open_zarr(SRC_DS_1_PATH, decode_cf=True)
        src_ds_2 = xr.open_zarr(SRC_DS_2_PATH, decode_cf=True)
        np.testing.assert_equal(src_ds_1.v.data, self.v_values_decoded)  # succeeds
        np.testing.assert_equal(src_ds_2.v.data, self.v_values_decoded)  # succeeds

    def tearDown(self):
        self.del_paths()

    def test_decode_cf_true(self):
        """
        This test succeeds.
        """
        # Open the two source datasets
        src_ds_1 = xr.open_zarr(SRC_DS_1_PATH, decode_cf=True)
        src_ds_2 = xr.open_zarr(SRC_DS_2_PATH, decode_cf=True)
        # Expect data is decoded
        np.testing.assert_equal(src_ds_1.v.data, self.v_values_decoded)  # succeeds
        np.testing.assert_equal(src_ds_2.v.data, self.v_values_decoded)  # succeeds

        # Write 1st source datasets to new dataset, append the 2nd source
        src_ds_1.to_zarr(DST_DS_PATH, mode='w-')
        src_ds_2.to_zarr(DST_DS_PATH, append_dim='t')

        # Open the new dataset
        dst_ds = xr.open_zarr(DST_DS_PATH, decode_cf=True)
        dst_ds_1 = dst_ds.isel(t=slice(0, 1))
        dst_ds_2 = dst_ds.isel(t=slice(1, 2))
        # Expect data is decoded
        np.testing.assert_equal(dst_ds_1.v.data, self.v_values_decoded)  # succeeds
        np.testing.assert_equal(dst_ds_2.v.data, self.v_values_decoded)  # succeeds

    def test_decode_cf_false(self):
        """
        This test fails by the last assertion with

        AssertionError:
        Arrays are not equal

        Mismatched elements: 3 / 4 (75%)
        Max absolute difference: 47600
        Max relative difference: 4.76
         x: array([[    0, 57600, 53632, 49664]], dtype=uint16)
         y: array([[    0, 10000, 15000, 20000]], dtype=uint16)
        """
        # Open the two source datasets
        src_ds_1 = xr.open_zarr(SRC_DS_1_PATH, decode_cf=False)
        src_ds_2 = xr.open_zarr(SRC_DS_2_PATH, decode_cf=False)
        # Expect data is NOT decoded (still encoded)
        np.testing.assert_equal(src_ds_1.v.data, self.v_values_encoded)  # succeeds
        np.testing.assert_equal(src_ds_2.v.data, self.v_values_encoded)  # succeeds

        # Write 1st source datasets to new dataset, append the 2nd source
        src_ds_1.to_zarr(DST_DS_PATH, mode='w-')
        # Avoid ValueError: failed to prevent overwriting existing key scale_factor in attrs. ...
        del src_ds_2.v.attrs['scale_factor']
        del src_ds_2.v.attrs['_FillValue']
        src_ds_2.to_zarr(DST_DS_PATH, append_dim='t')

        # Open the new dataset
        dst_ds = xr.open_zarr(DST_DS_PATH, decode_cf=False)
        dst_ds_1 = dst_ds.isel(t=slice(0, 1))
        dst_ds_2 = dst_ds.isel(t=slice(1, 2))
        # Expect data is NOT decoded (still encoded)
        np.testing.assert_equal(dst_ds_1.v.data, self.v_values_encoded)  # succeeds
        np.testing.assert_equal(dst_ds_2.v.data, self.v_values_encoded)  # fails

Environment:

Output of xr.show_versions()

INSTALLED VERSIONS

commit: None python: 3.8.8 | packaged by conda-forge | (default, Feb 20 2021, 15:50:08) [MSC v.1916 64 bit (AMD64)] python-bits: 64 OS: Windows OS-release: 10 machine: AMD64 processor: Intel64 Family 6 Model 26 Stepping 5, GenuineIntel byteorder: little LC_ALL: None LANG: None LOCALE: de_DE.cp1252 libhdf5: 1.10.6 libnetcdf: 4.7.4 xarray: 0.17.0 pandas: 1.2.2 numpy: 1.20.1 scipy: 1.6.0 netCDF4: 1.5.6 pydap: installed h5netcdf: None h5py: None Nio: None zarr: 2.6.1 cftime: 1.4.1 nc_time_axis: None PseudoNetCDF: None rasterio: 1.2.0 cfgrib: None iris: None bottleneck: None dask: 2021.02.0 distributed: 2021.02.0 matplotlib: 3.3.4 cartopy: 0.19.0.post1 seaborn: None numbagg: None pint: None setuptools: 49.6.0.post20210108 pip: 21.0.1 conda: None pytest: 6.2.2 IPython: 7.21.0 sphinx: 3.5.1

forman avatar May 30 '21 12:05 forman

@shoyer, I'd volunteer for a PR, should you agree extending Dataset.to_zarr in a backward compatible way:

def to_zarr(self, ..., encode_cf: bool = True):
    ...

forman avatar May 30 '21 14:05 forman

I'd like to control whether encoding of data shall take place when appending. If I already have encoded data, I'd like to call encoded_dataset.to_zarr(..., append_dim='time', encode_cf=False).

This sounds like a good idea to me. I think this has also come up in some other advanced use-cases with Zarr, e.g., that @rabernat has encountered.

shoyer avatar Jun 23 '21 15:06 shoyer

@shoyer @forman I just came across the same issue - is there any update related to this issue? I managed to fix it without changing the code by temporarily removing and re-adding CF attributes using the zarr package. But I hope there is the possibility to directly account for this within xarray's code as suggested above. Thanks!

cnavacch-spire avatar Jun 12 '24 12:06 cnavacch-spire