Deep-learning-with-neural-networks
Deep-learning-with-neural-networks copied to clipboard
[ImgBot] Optimize images
Beep boop. Your images are optimized!
Your image file size has been reduced by 20% 🎉
Details
| File | Before | After | Percent reduction |
|---|---|---|---|
| /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/outliers_padding_ex.png | 25.24kb | 9.11kb | 63.89% |
| /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/learning_autoencoder.png | 12.69kb | 5.56kb | 56.16% |
| /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/sparse_encoders.png | 7.91kb | 3.48kb | 55.94% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/quora_dataset.png | 75.64kb | 33.74kb | 55.39% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/gradient_of_loss.png | 7.08kb | 3.45kb | 51.30% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/en_fr_train.png | 5.31kb | 2.61kb | 50.82% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/final_loss_function.png | 5.47kb | 2.73kb | 50.14% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/fr_embedding.png | 6.92kb | 3.47kb | 49.91% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/new_triplet_loss.png | 39.07kb | 19.63kb | 49.76% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/en_embeddings.png | 7.65kb | 3.87kb | 49.39% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/accuracy.png | 6.24kb | 3.16kb | 49.39% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/cosine_similarity.png | 3.62kb | 1.84kb | 49.18% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/translation_problem.png | 3.60kb | 1.95kb | 45.91% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/modified_forbenius_norm.png | 3.02kb | 1.66kb | 44.96% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/description.png | 5.85kb | 3.25kb | 44.49% |
| /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/charRNN.png | 32.69kb | 18.47kb | 43.48% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/update_r.png | 3.03kb | 1.73kb | 42.84% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/distance_formula.png | 3.22kb | 1.87kb | 42.08% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/tanh_fn.png | 216.79kb | 126.69kb | 41.56% |
| /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/[email protected] | 55.89kb | 32.68kb | 41.53% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/triplet_loss.png | 14.70kb | 8.63kb | 41.26% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/leaky_relu.png | 239.64kb | 142.08kb | 40.71% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/original_forbenius_norm.png | 2.40kb | 1.45kb | 39.55% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/eigen_decompost.png | 4.23kb | 2.63kb | 37.80% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/CycleGAN_loss.png | 139.58kb | 87.27kb | 37.48% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/CycleGAN_loss.png | 139.58kb | 87.27kb | 37.48% |
| /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/denoising.png | 34.70kb | 21.73kb | 37.36% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/cyclegan_generator_ex.png | 151.93kb | 95.25kb | 37.31% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/cyclegan_generator_ex.png | 151.93kb | 95.25kb | 37.31% |
| /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/DAE.png | 1.46kb | 0.92kb | 37.22% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/discriminator_layers.png | 104.30kb | 65.72kb | 36.99% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/discriminator_layers.png | 104.30kb | 65.72kb | 36.99% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/30.eca_1.png | 5.92kb | 3.75kb | 36.71% |
| /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/network_diagram.png | 25.88kb | 16.38kb | 36.70% |
| /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/sequence_batching_ex.png | 124.59kb | 79.80kb | 35.95% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/frob_in_trace.png | 4.11kb | 2.69kb | 34.69% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/norms.png | 4.17kb | 2.73kb | 34.61% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/gan_network.png | 22.58kb | 14.80kb | 34.47% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/max_norm.png | 3.45kb | 2.27kb | 34.25% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/12. Dot product.png | 488.90kb | 321.92kb | 34.15% |
| /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/sequence_batching.png | 23.58kb | 15.60kb | 33.85% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/43.self_information.png | 3.63kb | 2.41kb | 33.81% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/11. Autocorrect Tool/images/auto-correct.png | 118.32kb | 79.16kb | 33.09% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/l1_norm.png | 3.04kb | 2.09kb | 31.09% |
| /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/conv_enc_2.png | 207.53kb | 143.84kb | 30.69% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/15. step - 1.png | 125.48kb | 87.18kb | 30.52% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/6. topic matrix -2.png | 306.85kb | 213.49kb | 30.42% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/16. sample a topic - 1.png | 374.49kb | 261.79kb | 30.09% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/7. topic matrix - 1.png | 298.55kb | 208.83kb | 30.05% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/14. Sample a topic-3.png | 497.99kb | 348.83kb | 29.95% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/trace_transpose.png | 3.52kb | 2.47kb | 29.92% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/51.bagging_3.png | 3.08kb | 2.16kb | 29.82% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/9. Skip-gram model.png | 746.83kb | 524.35kb | 29.79% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/3. Matrix multiplication .png | 624.24kb | 441.60kb | 29.26% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/8. Beta Distribution .png | 252.73kb | 178.82kb | 29.25% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/10. decimal beta distribution .png | 313.58kb | 222.46kb | 29.06% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/15. sample a topic - 2.png | 655.19kb | 464.83kb | 29.05% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/3. matrix.png | 465.81kb | 330.79kb | 28.99% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/3. document-term matric.png | 465.81kb | 330.79kb | 28.99% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/1. C-BOW.png | 402.19kb | 285.91kb | 28.91% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/siamese_networks.png | 267.54kb | 190.57kb | 28.77% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/8. NMT with attention.png | 253.07kb | 180.34kb | 28.74% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/sample_output_2.png | 69.64kb | 49.66kb | 28.69% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/2. text cleaning.png | 295.47kb | 210.91kb | 28.62% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/4. Matrix multiplcation max.png | 677.38kb | 483.74kb | 28.59% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/12. Dirichlet distribution .png | 431.57kb | 308.23kb | 28.58% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/6. TF-IDF Matrix.png | 482.89kb | 345.33kb | 28.49% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/5. BOW-Matrix.png | 408.77kb | 292.60kb | 28.42% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/20. final topic model.png | 621.05kb | 444.78kb | 28.38% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/14.equivariance.png | 14.23kb | 10.21kb | 28.25% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/1. BOW.png | 166.51kb | 119.74kb | 28.09% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/18. sample a word - 3.png | 459.65kb | 332.78kb | 27.60% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/19. combining models.png | 593.49kb | 429.75kb | 27.59% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/16. sample a word-1.png | 370.33kb | 268.45kb | 27.51% |
| /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/autoencoder_denoise.png | 135.98kb | 98.78kb | 27.36% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/17. sample a word -2.png | 520.15kb | 378.19kb | 27.29% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/6. document matrix.png | 243.23kb | 176.93kb | 27.26% |
| /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/reviews_ex.png | 66.56kb | 48.47kb | 27.19% |
| /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/conv_enc_1.png | 151.92kb | 110.76kb | 27.10% |
| /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/[email protected] | 15.81kb | 11.55kb | 26.94% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/2. Latent Variables.png | 355.89kb | 260.58kb | 26.78% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/2. basic encoder-decoder.png | 311.37kb | 228.01kb | 26.77% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/11. step - 5.png | 166.55kb | 122.01kb | 26.74% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/7. One-Hot Encoding.png | 297.62kb | 218.06kb | 26.73% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/4. Corpus & Vocab.png | 296.62kb | 217.34kb | 26.73% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/sample_output_1.png | 62.00kb | 45.53kb | 26.56% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/1. Naive Bayes Classifier/images/NLP Pipeline.png | 423.16kb | 310.97kb | 26.51% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/19. Topic model.png | 870.01kb | 639.92kb | 26.45% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_2.png | 26.67kb | 19.64kb | 26.37% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/training_cycle_ex.png | 184.52kb | 136.44kb | 26.06% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/training_cycle_ex.png | 184.52kb | 136.44kb | 26.06% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/forward_pass.png | 23.42kb | 17.36kb | 25.87% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/9. step - 3.png | 251.84kb | 186.80kb | 25.83% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/1. drawbacks of seq2seq.png | 241.22kb | 179.17kb | 25.73% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/SVD.png | 2.62kb | 1.95kb | 25.62% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/07.b_computation.png | 43.40kb | 32.34kb | 25.49% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/3. transformer model.png | 301.77kb | 224.86kb | 25.49% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/10. step - 4.png | 280.26kb | 208.86kb | 25.48% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/8. step - 2.png | 224.99kb | 167.68kb | 25.47% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/12. step - 6.png | 197.75kb | 147.80kb | 25.26% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/06.f_computation.png | 31.97kb | 23.90kb | 25.26% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/38. variance.png | 8.29kb | 6.20kb | 25.22% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_final_algo.png | 65.62kb | 49.11kb | 25.15% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/orthonormal_matrix.png | 2.91kb | 2.18kb | 25.07% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_3.png | 65.62kb | 49.25kb | 24.94% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/41.Properties_of_softplus.png | 23.15kb | 17.38kb | 24.93% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/08.toeplitz_matrix_1d.png | 12.13kb | 9.11kb | 24.85% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/13. 3D D Distributions.png | 664.15kb | 500.93kb | 24.58% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/22. step - 1.png | 337.22kb | 254.78kb | 24.45% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/8. Word Embeddings.png | 245.76kb | 185.69kb | 24.44% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/14. step - 8.png | 205.73kb | 155.60kb | 24.37% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/11. Co-occurance probability.png | 438.21kb | 331.56kb | 24.34% |
| /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/2. Deploy your own sentiment analysis model/Img/pos_review.png | 35.03kb | 26.54kb | 24.26% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/3. word alignment.png | 214.96kb | 163.13kb | 24.11% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/9. Word Embeddings - 1.png | 212.00kb | 160.96kb | 24.07% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/23. Bayesian_stats.png | 5.47kb | 4.16kb | 23.94% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/52.bagging_4.png | 9.88kb | 7.52kb | 23.88% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/9. flexible attention.png | 207.10kb | 157.83kb | 23.79% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/6. Inside attention layer.png | 284.08kb | 216.50kb | 23.79% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/normas_2.png | 2.37kb | 1.80kb | 23.74% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/13. step - 7.png | 189.13kb | 144.68kb | 23.50% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/7. step - 1.png | 154.82kb | 118.85kb | 23.23% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/10. Word2Vec.png | 338.60kb | 260.85kb | 22.96% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/50. SSE.png | 4.09kb | 3.15kb | 22.96% |
| /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/2. Deploy your own sentiment analysis model/Img/neg_review.png | 45.31kb | 34.95kb | 22.87% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/3. Bigrams.png | 484.46kb | 373.73kb | 22.86% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/7. Transition Probability.png | 608.32kb | 469.48kb | 22.82% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/1. basic seq-to-seq model.png | 242.75kb | 187.35kb | 22.82% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/7. Conditional_prob.png | 3.79kb | 2.92kb | 22.82% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/resnet_block.png | 33.53kb | 25.91kb | 22.73% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/resnet_block.png | 33.53kb | 25.91kb | 22.73% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/2. look-up table.png | 416.13kb | 321.70kb | 22.69% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/20. step - 6.png | 306.69kb | 237.71kb | 22.49% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/23. MAP.png | 5.59kb | 4.34kb | 22.30% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/41.bt_computation.png | 17.84kb | 13.87kb | 22.28% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/4. alignment and attention.png | 355.30kb | 276.24kb | 22.25% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/19. step - 5.png | 248.33kb | 193.12kb | 22.23% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/27. step - 2.png | 86.47kb | 67.32kb | 22.15% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/26. step -1 .png | 48.08kb | 37.43kb | 22.15% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/23. step - 2.png | 193.00kb | 150.29kb | 22.13% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/2.NMT basic model.png | 210.69kb | 164.08kb | 22.12% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/16.l1_objective_function.png | 3.59kb | 2.80kb | 22.01% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/26. step - 12.png | 497.00kb | 387.69kb | 21.99% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/40. co_variance_02.png | 3.43kb | 2.67kb | 21.99% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/16. step - 2.png | 250.37kb | 195.32kb | 21.99% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/29. step - 4.png | 106.88kb | 83.50kb | 21.88% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/euclidean_norm.png | 2.79kb | 2.18kb | 21.80% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/25. step - 11.png | 483.12kb | 378.03kb | 21.75% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/23. step - 9.png | 447.99kb | 350.63kb | 21.73% |
| /Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/04. unfolded_terminologies.png | 27.05kb | 21.17kb | 21.73% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/22. step - 8.png | 382.98kb | 299.78kb | 21.73% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/21. step - 7.png | 334.19kb | 261.74kb | 21.68% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/24. step - 10.png | 456.51kb | 358.16kb | 21.54% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/18.update_for_momentum.png | 7.47kb | 5.86kb | 21.54% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/30. step - 5.png | 200.61kb | 157.60kb | 21.44% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/19.first_result_calculus_tools.png | 3.79kb | 2.98kb | 21.44% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/20.nestrov_momentum_update.png | 7.78kb | 6.12kb | 21.41% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/14. unbiased_variance_estimator.png | 3.89kb | 3.06kb | 21.37% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/15.l1_regularization.png | 2.62kb | 2.06kb | 21.36% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/18.l1_decomposition_over_params.png | 5.41kb | 4.26kb | 21.25% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/28.softplus_logit.png | 6.93kb | 5.46kb | 21.12% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/24. step - 3.png | 345.24kb | 272.33kb | 21.12% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/26.Precision_matrix.png | 6.92kb | 5.46kb | 21.11% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/27. step - 13.png | 525.49kb | 415.01kb | 21.02% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/reconstruction_error.png | 114.79kb | 90.90kb | 20.82% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/reconstruction_error.png | 114.79kb | 90.90kb | 20.82% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/02.emperical_risk.png | 7.41kb | 5.87kb | 20.79% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/33.effect_of_constraints.png | 7.37kb | 5.84kb | 20.78% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/cycle_consistency_ex.png | 371.97kb | 294.67kb | 20.78% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/cycle_consistency_ex.png | 371.97kb | 294.67kb | 20.78% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/28. step - 3.png | 96.38kb | 76.42kb | 20.72% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/33.regularized_newton.png | 4.77kb | 3.78kb | 20.71% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/XY_season_images.png | 275.48kb | 218.42kb | 20.71% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/XY_season_images.png | 275.48kb | 218.42kb | 20.71% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/25. step - 4.png | 400.65kb | 317.82kb | 20.67% |
| /Chapter-wise code/logo/Pytorch_logo.png | 19.23kb | 15.26kb | 20.64% |
| /Chapter-wise code/Code - PyTorch/logo/Pytorch_logo.png | 19.23kb | 15.26kb | 20.64% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/59.effect_of_dropout.png | 66.39kb | 52.70kb | 20.61% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/18. max_likelihood_estimation.png | 7.39kb | 5.87kb | 20.59% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/25.Multivariate_distribution.png | 7.47kb | 5.93kb | 20.56% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/15. MSE.png | 4.88kb | 3.88kb | 20.50% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/15.Covariance.png | 5.21kb | 4.15kb | 20.39% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/31.taylor_expansion.png | 6.51kb | 5.18kb | 20.38% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/16. step - 2.png | 118.75kb | 94.60kb | 20.34% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/19.minimize_function.png | 4.40kb | 3.51kb | 20.23% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/20. attention formula.png | 255.82kb | 204.08kb | 20.22% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/18.Bernoulli_distribution.png | 7.27kb | 5.80kb | 20.19% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/03.l2_norm_penalty.png | 2.28kb | 1.82kb | 20.09% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/39. co_variance_01.png | 3.65kb | 2.92kb | 20.07% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/23.Precision.png | 5.29kb | 4.23kb | 20.07% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/14. standard_error.png | 5.00kb | 4.00kb | 20.02% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/07. test_error.png | 3.60kb | 2.88kb | 19.98% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/33. sample_covariance.png | 2.19kb | 1.75kb | 19.96% |
| /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/2. AWS Sagemaker dashboard.png | 109.80kb | 87.89kb | 19.95% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/05.commutative_lhs.png | 5.14kb | 4.12kb | 19.93% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/18. step - 4.png | 171.40kb | 137.32kb | 19.89% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/7. attention visual - 1.png | 117.12kb | 93.87kb | 19.85% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/6. T5 model.png | 517.77kb | 415.00kb | 19.85% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/12.Expectation_for_continous_variables.png | 3.71kb | 2.97kb | 19.77% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/29.Laplace.png | 4.40kb | 3.53kb | 19.76% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/18. step - 4.png | 255.88kb | 205.37kb | 19.74% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/15. step - 1.png | 145.59kb | 116.98kb | 19.65% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/32.solution_to_constrained_lagrange.png | 4.65kb | 3.74kb | 19.64% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/31.Emperical.png | 3.46kb | 2.78kb | 19.60% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/04.jacobian_matrix.png | 3.96kb | 3.19kb | 19.53% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/47.polyak_averaging_noncovex.png | 3.40kb | 2.74kb | 19.49% |
| /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/1. AWS console dashboard.png | 115.76kb | 93.28kb | 19.42% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/38.peturbed_obj_funct.png | 4.22kb | 3.40kb | 19.39% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/42.Baeyes.png | 3.24kb | 2.61kb | 19.37% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/span.png | 2.41kb | 1.94kb | 19.36% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/39.Softplus.png | 1.86kb | 1.50kb | 19.31% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/10.wt_expansion.png | 4.49kb | 3.63kb | 19.26% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/20. conditional_mle.png | 5.01kb | 4.05kb | 19.22% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/5. Calculating alignment for NMT model.png | 576.54kb | 465.75kb | 19.22% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/9.Indipendence_Rule.png | 4.50kb | 3.63kb | 19.17% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/17. step - 3 - 1.png | 226.23kb | 182.91kb | 19.15% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/16.non_linear_model.png | 5.00kb | 4.04kb | 19.14% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/20.second_result_calculus_tools.png | 4.72kb | 3.82kb | 19.11% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/02.MSE.png | 3.68kb | 2.98kb | 19.01% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/18.optimization_problem.png | 4.84kb | 3.92kb | 18.98% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/04.2-D-cnn.png | 9.38kb | 7.61kb | 18.84% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/17. step - 3.png | 254.18kb | 206.39kb | 18.80% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/5. Emission Probability.png | 379.97kb | 308.89kb | 18.71% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/12. bias.png | 2.28kb | 1.85kb | 18.69% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/19. max_lik_est_expect.png | 4.45kb | 3.62kb | 18.63% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/32.stable_softmax.png | 4.98kb | 4.05kb | 18.62% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/3.jpd_1.png | 2.15kb | 1.75kb | 18.60% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/06.commutative_rhs.png | 4.72kb | 3.85kb | 18.55% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/24.linear_approach_to_bernoulli.png | 5.20kb | 4.24kb | 18.52% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/17. step - 3.png | 148.35kb | 120.91kb | 18.50% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/14. with teacher forcing.png | 326.48kb | 266.17kb | 18.47% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/21. causal attention overview.png | 111.98kb | 91.54kb | 18.25% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/22.Gaussian_distribution.png | 5.39kb | 4.41kb | 18.24% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/32.update_rule_newton.png | 2.96kb | 2.42kb | 18.17% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/01.cost_function_for_entire_data_set.png | 4.34kb | 3.56kb | 18.11% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/5. positional encoding.png | 211.50kb | 173.58kb | 17.93% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/07.cross_correlation.png | 4.71kb | 3.86kb | 17.93% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/11.l2_effect_of_weight_decay.png | 4.60kb | 3.78kb | 17.91% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/6.Marginal_prob_continous.png | 2.56kb | 2.10kb | 17.80% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/03.vectorized_chain_rule.png | 3.06kb | 2.52kb | 17.71% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/10.linear_output.png | 2.32kb | 1.91kb | 17.68% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/01.function_composition.png | 2.77kb | 2.28kb | 17.64% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_example.png | 9.04kb | 7.45kb | 17.61% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/25. linear_regression.png | 2.44kb | 2.01kb | 17.51% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/02.function_chain_rule.png | 3.71kb | 3.06kb | 17.40% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/39.leaky_relu.png | 3.47kb | 2.87kb | 17.22% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/59.am_pd_dropout.png | 3.39kb | 2.81kb | 17.08% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/28. BLEU Score Calculation.png | 408.23kb | 338.55kb | 17.07% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/28. Kernels.png | 3.26kb | 2.70kb | 17.06% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/06.mse_linear_transformations.png | 4.94kb | 4.10kb | 16.96% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/24.Standard_Normal_Distribution.png | 25.94kb | 21.55kb | 16.90% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/34.maximization_goal.png | 4.34kb | 3.61kb | 16.87% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/11.sgd_convergence.png | 4.45kb | 3.70kb | 16.86% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/09.l2_quadratic_approximation.png | 4.21kb | 3.50kb | 16.78% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/36.Sigmoid_function.png | 2.24kb | 1.86kb | 16.75% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/13.Rules_of_expectation.png | 4.13kb | 3.44kb | 16.74% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/58.am_pd_bagging.png | 3.36kb | 2.80kb | 16.73% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/10. data in NMT.png | 181.07kb | 150.80kb | 16.71% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/orthogonal_matrix.png | 2.28kb | 1.90kb | 16.69% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/17.cross_entropy.png | 4.97kb | 4.14kb | 16.68% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/13. No teacher forcing.png | 334.82kb | 279.04kb | 16.66% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/24.traditional_convolution.png | 48.38kb | 40.32kb | 16.65% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/eigen_vector.png | 1.85kb | 1.54kb | 16.60% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/25.sigmoid_bernoulli.png | 2.54kb | 2.12kb | 16.58% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/29.softplus.png | 3.18kb | 2.66kb | 16.57% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/26. logistic_regression.png | 2.48kb | 2.07kb | 16.53% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/15.relu_graph.png | 9.56kb | 7.98kb | 16.47% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/11. NMT setup-english.png | 552.26kb | 461.51kb | 16.43% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/02.chain_rul.png | 2.74kb | 2.29kb | 16.41% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/8.Chain_Rule.png | 4.54kb | 3.80kb | 16.39% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/40.conjugates.png | 1.89kb | 1.58kb | 16.36% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/10.Conditional_Indipendence.png | 5.04kb | 4.22kb | 16.34% |
| /Chapter-wise code/Code - PyTorch/images/install_pytorch.png | 23.96kb | 20.05kb | 16.30% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/14.Variance.png | 3.20kb | 2.68kb | 16.27% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/diag_matrix_2.png | 1.76kb | 1.47kb | 16.27% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/38.Softplus_function.png | 2.55kb | 2.14kb | 16.20% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/12.decomposition_of_hessian_matrix.png | 9.18kb | 7.69kb | 16.19% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/19. step - 5.png | 238.57kb | 199.97kb | 16.18% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/10.l2_approximaton_minimal.png | 3.16kb | 2.65kb | 16.09% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/11.Expectation.png | 3.03kb | 2.54kb | 16.08% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/04.ill_conditioning.png | 2.16kb | 1.81kb | 15.99% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/4. multi-head attention.png | 233.07kb | 195.81kb | 15.99% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/05.non_linear_function.png | 3.67kb | 3.08kb | 15.98% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/31. multi-head attention.png | 345.75kb | 290.57kb | 15.96% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/03.1-D-cnn.png | 7.17kb | 6.02kb | 15.96% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/30.Dirac_delta.png | 1.88kb | 1.58kb | 15.93% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/36.congugate_solution.png | 2.91kb | 2.45kb | 15.86% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/41.maxout_units.png | 3.12kb | 2.62kb | 15.83% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/35.obj_function_without_noise.png | 2.95kb | 2.48kb | 15.78% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/13. asymptotically_unbiased.png | 2.47kb | 2.08kb | 15.78% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/48.supervised_pretraining.png | 83.39kb | 70.27kb | 15.74% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/40.param_relu.png | 3.90kb | 3.29kb | 15.71% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/transpose.png | 3.23kb | 2.72kb | 15.68% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/31.softmax_fucntion.png | 15.39kb | 12.98kb | 15.67% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/23.tiled_convolution.png | 65.05kb | 54.88kb | 15.63% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/8. Sentence generation.png | 305.21kb | 257.75kb | 15.55% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/21. Parameters_controlling_normal_distribution.png | 2.38kb | 2.01kb | 15.53% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/29. Kernels_2.png | 2.82kb | 2.39kb | 15.34% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/10.complete_linear_xor.png | 4.47kb | 3.78kb | 15.33% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/32.Multinouli_distribution.png | 3.02kb | 2.56kb | 15.16% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/diagnol_matrix.png | 1.72kb | 1.46kb | 15.12% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/12. NMT setup - german.png | 685.37kb | 582.14kb | 15.06% |
| /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/7. running notebook.png | 60.06kb | 51.08kb | 14.95% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/08.linear_hidden.png | 2.25kb | 1.92kb | 14.88% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/12.learning_rate_decay.png | 2.00kb | 1.70kb | 14.88% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/21.Gaussian_distribution.png | 2.77kb | 2.36kb | 14.78% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/16. relationship_graph.png | 27.69kb | 23.60kb | 14.77% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/07.l2_weight_update_3.png | 3.28kb | 2.80kb | 14.74% |
| /Chapter-wise code/Code - PyTorch/images/activating_gpu_2.png | 28.01kb | 23.91kb | 14.65% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/25.computation.png | 38.01kb | 32.48kb | 14.54% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/30. dot_product.png | 1.91kb | 1.63kb | 14.53% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/mpr.png | 1.73kb | 1.48kb | 14.42% |
| /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/charseq.jpeg | 82.79kb | 70.88kb | 14.39% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/5. TF-IDF.png | 187.09kb | 160.23kb | 14.36% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/43.Effect_of_depth_on_accuracy.png | 65.94kb | 56.48kb | 14.35% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/29.lagrange_with_constrains.png | 4.67kb | 4.01kb | 14.29% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/14.relu.png | 2.47kb | 2.12kb | 14.24% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/1. pos tagging.png | 137.33kb | 117.78kb | 14.24% |
| /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/29. ROUGE Score Calculation.png | 292.32kb | 250.87kb | 14.18% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/36.peturbation.png | 2.24kb | 1.92kb | 14.17% |
| /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/general_rule.png | 16.95kb | 14.55kb | 14.14% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/06.l2_weight_update_2.png | 3.18kb | 2.73kb | 14.12% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/4.pdf_interval.png | 1.78kb | 1.53kb | 14.08% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/33.conditions.png | 2.59kb | 2.23kb | 14.03% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/08.jacobian_matrix.png | 3.30kb | 2.84kb | 14.01% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/17. consistency.png | 1.85kb | 1.59kb | 14.01% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/5.Marginal_prob.png | 3.06kb | 2.63kb | 14.00% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/26.structured_outputs.png | 60.36kb | 51.95kb | 13.93% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/36.ReLU_generalization.png | 3.48kb | 3.00kb | 13.92% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/gan_pipeline.png | 192.15kb | 165.71kb | 13.76% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/11.linear_network.png | 2.22kb | 1.92kb | 13.70% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/35.saturation_condition_01.png | 1.98kb | 1.71kb | 13.69% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/11. function_estimator.png | 1.60kb | 1.38kb | 13.66% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/6. Hidden Markov Model.png | 399.13kb | 344.96kb | 13.57% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/13.relu_applied.png | 2.41kb | 2.09kb | 13.35% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/07.linear_model.png | 2.55kb | 2.21kb | 13.31% |
| /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/default_initialization.png | 16.32kb | 14.16kb | 13.25% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/57.prob_dist.png | 1.80kb | 1.56kb | 13.17% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/22. data_likelihood.png | 2.26kb | 1.97kb | 13.03% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/27.Exponential_Distribution.png | 2.67kb | 2.33kb | 13.03% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/17.l1_gradient.png | 3.66kb | 3.18kb | 12.98% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/35.congugate_directions.png | 61.52kb | 53.54kb | 12.98% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/32. ith-example.png | 1.66kb | 1.44kb | 12.85% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/resnet_50.png | 85.95kb | 74.96kb | 12.79% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/resnet_50.png | 85.95kb | 74.96kb | 12.79% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/2.jpd_2.png | 1.63kb | 1.42kb | 12.77% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/42.tanh.png | 2.59kb | 2.26kb | 12.75% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/4. ET probabilities.png | 204.76kb | 178.87kb | 12.64% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/04. MSE-train.png | 2.07kb | 1.81kb | 12.57% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/09.circulant_matrix.png | 20.91kb | 18.28kb | 12.57% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/06. linear_regression.png | 1.51kb | 1.33kb | 12.39% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/13. bias_of_variance_of_gaussian_distribution.png | 1.57kb | 1.38kb | 12.35% |
| /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/autoencoder_1.png | 24.69kb | 21.67kb | 12.24% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/37. eigen_vectors.png | 3.19kb | 2.81kb | 12.08% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/05.ill_conditioing_in_taylor_series.png | 2.80kb | 2.46kb | 11.93% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/08. Error_graph.png | 25.38kb | 22.35kb | 11.92% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/22.unshared_convolution.png | 38.47kb | 33.89kb | 11.91% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/13.eigen_decomposition.png | 24.93kb | 21.97kb | 11.88% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/1.uniform_distribution.png | 1.65kb | 1.46kb | 11.83% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/08.l2_minimum_training_cost.png | 2.30kb | 2.03kb | 11.67% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/12.sparse_connections.png | 108.77kb | 96.09kb | 11.65% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/16.Covariance_matrix.png | 2.60kb | 2.30kb | 11.60% |
| /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/normal_vs_general.png | 22.96kb | 20.30kb | 11.60% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/05. Optimum_weight.png | 4.28kb | 3.79kb | 11.42% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/unit_vector.png | 1.47kb | 1.30kb | 11.33% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/34.prior_probability.png | 1.38kb | 1.22kb | 11.27% |
| /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/uniform_weights.png | 18.88kb | 16.77kb | 11.19% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/31. kernel_predictions.png | 2.97kb | 2.64kb | 11.07% |
| /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/mini_batch_1.png | 43.84kb | 38.99kb | 11.07% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/10. point_estimator.png | 2.56kb | 2.28kb | 11.05% |
| /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/zeros_vs_ones.png | 16.53kb | 14.70kb | 11.04% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/38.active_relu_condition_2.png | 1.38kb | 1.23kb | 10.93% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/61.effect_of_dataset_size.png | 35.95kb | 32.02kb | 10.92% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/41.multi_task_learning.png | 31.98kb | 28.52kb | 10.84% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/40.Softplus_graph.png | 9.85kb | 8.81kb | 10.50% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/33.Gaussian_mixture.png | 1.37kb | 1.23kb | 10.47% |
| /Chapter-wise code/Code - PyTorch/1. Intro to PyTorch/images/jacobian_product.png | 38.68kb | 34.67kb | 10.39% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/37.Sigmoid_graph.png | 10.17kb | 9.15kb | 9.99% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/03. training_set.png | 2.03kb | 1.83kb | 9.91% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/43.memory_space_BFGS.png | 1.30kb | 1.18kb | 9.36% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/05.graphs_and_chain_rule.png | 30.35kb | 27.53kb | 9.30% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/21.case_1_2.png | 1.25kb | 1.14kb | 9.18% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/symmetric_matrix.png | 1.50kb | 1.36kb | 9.14% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/26.first_sigmoid_layer.png | 1.45kb | 1.32kb | 9.10% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/17.Covariance_matrix_2.png | 2.28kb | 2.07kb | 9.05% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/32.linear_approach_for_softmax.png | 1.63kb | 1.49kb | 8.97% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/22.case_2_2.png | 1.24kb | 1.13kb | 8.77% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/05.issue_with_local_minima.png | 46.35kb | 42.38kb | 8.56% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/08.gradient_clipping.png | 23.83kb | 21.81kb | 8.46% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/01.computational_graphs.png | 66.37kb | 60.77kb | 8.44% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/29.sepearable_kernel.png | 1.44kb | 1.32kb | 8.36% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/45.param_tying_01.png | 11.52kb | 10.56kb | 8.30% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/21. examples.png | 1.65kb | 1.51kb | 8.30% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/horse2zebra.jpg | 26.52kb | 24.33kb | 8.26% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/horse2zebra.jpg | 26.52kb | 24.33kb | 8.26% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/34.computational_complex_newton.png | 1.32kb | 1.22kb | 7.98% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/15.gradient.png | 15.64kb | 14.40kb | 7.92% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/28.gen_lag_constrains.png | 15.37kb | 14.16kb | 7.85% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/Selection_097.png | 2.70kb | 2.49kb | 7.77% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/22.linear_units.png | 1.69kb | 1.56kb | 7.75% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/properties_of_norm.png | 14.12kb | 13.04kb | 7.63% |
| /Deep Learning Nanodegree Certificate/images/final_completion_certificate.png | 142.19kb | 131.39kb | 7.60% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/28.traditional_kernel.png | 1.22kb | 1.13kb | 7.38% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/images/training_loss.png | 27.74kb | 25.72kb | 7.29% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/linear_combination'.png | 2.24kb | 2.08kb | 7.28% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/46.comparison_bw_bn_nonbn.png | 145.92kb | 135.40kb | 7.21% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/22.grad_update_for_adagrad.png | 15.15kb | 14.07kb | 7.16% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/09.linear_deep_network.png | 22.28kb | 20.69kb | 7.16% |
| /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/5. create IAM role.png | 85.44kb | 79.39kb | 7.08% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/25.rmsprop_gradient.png | 15.29kb | 14.22kb | 7.03% |
| /images/deep-learning-book-goodfellow-cover.jpg | 181.02kb | 168.33kb | 7.01% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/44.Shannon_entropy.png | 7.54kb | 7.03kb | 6.82% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/52.eight_detector.png | 101.06kb | 94.21kb | 6.78% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/en_fr_embeddings.png | 34.16kb | 31.85kb | 6.77% |
| /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/6. notebook instance settings.png | 97.64kb | 91.08kb | 6.72% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/49.Directed_graphs.png | 6.02kb | 5.62kb | 6.60% |
| /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/9. gamma function.png | 30.23kb | 28.27kb | 6.48% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/identity_matrix.png | 2.11kb | 1.98kb | 6.39% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/27.update_rmsprop.png | 7.20kb | 6.75kb | 6.27% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/23.accumulate_adagrad.png | 20.69kb | 19.41kb | 6.15% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/trace.png | 4.16kb | 3.91kb | 6.10% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/30.final_update_adam.png | 5.90kb | 5.56kb | 5.74% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/52.Normalizing_constant.png | 6.07kb | 5.73kb | 5.71% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/27.single_vs_multichanel.png | 46.17kb | 43.57kb | 5.65% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/04.hidden_layer.png | 1.69kb | 1.60kb | 5.44% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/27.sigmoidal_transformation_of_logit.png | 53.02kb | 50.24kb | 5.25% |
| /Chapter-wise code/Code - PyTorch/images/activating_gpu.png | 49.22kb | 46.67kb | 5.19% |
| /Chapter-wise code/images/ben_passmore.jpg | 318.59kb | 302.16kb | 5.16% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/26.accumulate_rmsprop.png | 9.40kb | 8.92kb | 5.11% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/57.dropout_modelling.png | 117.26kb | 111.39kb | 5.01% |
| /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/data/15. rnn_classifier.png | 10.75kb | 10.22kb | 4.96% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/Selection_096.png | 1.96kb | 1.86kb | 4.93% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/47.Cross_entropy.png | 6.12kb | 5.83kb | 4.77% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/45.KL_divergence.png | 13.94kb | 13.31kb | 4.54% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/01.updated_convolution_operation.png | 24.69kb | 23.57kb | 4.53% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/19.accumulate_velocity.png | 4.56kb | 4.36kb | 4.45% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/09. weight_decay.png | 5.63kb | 5.38kb | 4.41% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/before_after_ev.png | 41.55kb | 39.72kb | 4.40% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/54.Undirected_graph_2.png | 8.92kb | 8.53kb | 4.38% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/4. Generate Faces via DCGAN/images/generator_discriminator_loss.png | 19.07kb | 18.29kb | 4.13% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/45.batch_transformation.png | 21.76kb | 20.91kb | 3.90% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/28.momentum_update_adam.png | 12.73kb | 12.23kb | 3.86% |
| /Chapter-wise code/images/octopus.jpg | 90.07kb | 86.62kb | 3.83% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/trace_comm.png | 7.81kb | 7.51kb | 3.81% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/46.param_tying_02.png | 9.02kb | 8.70kb | 3.49% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/47.param_tying_03.png | 6.69kb | 6.46kb | 3.47% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/16.update.png | 4.05kb | 3.92kb | 3.44% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/55.OOB_2.png | 11.06kb | 10.68kb | 3.37% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/58.dropout_modelling_00'.png | 123.91kb | 119.80kb | 3.32% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/split_2_points.png | 57.26kb | 55.37kb | 3.31% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/46. softmax_classifictaion_problem.png | 62.86kb | 60.78kb | 3.30% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/37.peturbed_model.png | 1.36kb | 1.32kb | 3.29% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/24.update_adagrad.png | 13.14kb | 12.71kb | 3.21% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/29.bias_update_adam.png | 27.79kb | 26.90kb | 3.20% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/43.Hard_MTL.png | 33.13kb | 32.11kb | 3.07% |
| /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/3. zero notebook instances.png | 53.90kb | 52.34kb | 2.90% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/11.doubly_circulant_matrix.png | 85.16kb | 82.71kb | 2.88% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/50.bagging_2.png | 12.58kb | 12.22kb | 2.84% |
| /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/4. name your notebook.png | 105.44kb | 102.46kb | 2.83% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/05.l2_weight_update.png | 3.50kb | 3.41kb | 2.81% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/06.saddle_point.png | 71.64kb | 69.68kb | 2.74% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/mpr_formula.png | 5.24kb | 5.11kb | 2.48% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/46.KL_properties.png | 5.40kb | 5.27kb | 2.39% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/01.convolution_operation.png | 21.34kb | 20.84kb | 2.33% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/regression.png | 1.14kb | 1.12kb | 1.80% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/53.Undirected_graph.png | 18.18kb | 17.88kb | 1.66% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/48.Structured_probability.png | 6.30kb | 6.20kb | 1.58% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/Selection_098.png | 1.69kb | 1.66kb | 1.50% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/l1_l2_regularization.png | 90.91kb | 89.72kb | 1.31% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/10.curculant_matrix.png | 64.44kb | 63.63kb | 1.27% |
| /Chapter-wise notes/Ch_1_Linear_algebra/images/dot_product.png | 4.47kb | 4.42kb | 1.20% |
| /Chapter-wise code/images/hockney.jpg | 18.31kb | 18.11kb | 1.10% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/53.bagging_examples.png | 35.56kb | 35.20kb | 1.01% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/50.Directed_graph_2.png | 19.66kb | 19.50kb | 0.82% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/l1_vs_l2.png | 64.39kb | 63.95kb | 0.68% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/48.param_tying_04.png | 50.73kb | 50.39kb | 0.67% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/13.comparison_sparse_interactions.png | 155.61kb | 154.69kb | 0.59% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/sample-004000-summer2winter.png | 934.39kb | 930.58kb | 0.41% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/sample-004000-summer2winter.png | 934.39kb | 930.58kb | 0.41% |
| /Chapter-wise code/images/target.png | 366.91kb | 365.87kb | 0.28% |
| /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/51.Directed_graph_3.png | 9.33kb | 9.30kb | 0.28% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/images/summer_to_winter.png | 527.83kb | 526.52kb | 0.25% |
| /Chapter-wise code/images/target_octopus.png | 233.01kb | 232.43kb | 0.25% |
| /Chapter-wise code/images/style_purva.png | 349.62kb | 348.80kb | 0.23% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/images/winter_to_summer.png | 504.69kb | 503.56kb | 0.23% |
| /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/03.batch_vs_minibatch.png | 305.47kb | 305.06kb | 0.13% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/style_transfer/17. effect_of_ratio.png | 446.70kb | 446.22kb | 0.11% |
| /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/6. Attention/images/decoder_depth_2.png | 121.01kb | 120.89kb | 0.10% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/39.noise_robustness.png | 238.78kb | 238.54kb | 0.10% |
| /Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/07. lstm_basics_3.png | 108.09kb | 107.99kb | 0.09% |
| /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/lstm_rnn_architecture.png | 94.24kb | 94.16kb | 0.09% |
| /Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/02. RNN.png | 129.56kb | 129.45kb | 0.08% |
| /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/img/03. CNNs'.png | 120.82kb | 120.73kb | 0.07% |
| /Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/05. lstm_basics_1.png | 76.29kb | 76.24kb | 0.06% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/59. grad_desc.png | 85.23kb | 85.18kb | 0.06% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/55. mount_err_5.png | 66.65kb | 66.61kb | 0.06% |
| /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/style_transfer/02.content_and_style_image.png | 199.24kb | 199.13kb | 0.06% |
| /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/img/02. MLP.png | 118.47kb | 118.41kb | 0.05% |
| /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/machine_learning_workflow.png | 72.92kb | 72.89kb | 0.05% |
| /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/4. Generate Faces via DCGAN/images/generated_faces.png | 111.66kb | 111.62kb | 0.04% |
| /Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/momentum.png | 98.54kb | 98.51kb | 0.03% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/44.param_sharing_for_CNN.png | 260.12kb | 260.03kb | 0.03% |
| /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/53. mount_err_3.png | 59.60kb | 59.58kb | 0.03% |
| /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/nn_over_and_under_fitting.png | 175.95kb | 175.90kb | 0.03% |
| /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/6. Attention/images/decoder_depth.png | 101.60kb | 101.57kb | 0.03% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/predicts_split_2_points.png | 141.95kb | 141.92kb | 0.02% |
| /Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/14. remember_gate.png | 92.04kb | 92.02kb | 0.01% |
| /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/34.data_augmentation.png | 194.98kb | 194.96kb | 0.01% |
| /Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/06. lstm_basics_2.png | 97.61kb | 97.61kb | 0.00% |
| Total : | 53,858.05kb | 43,285.75kb | 19.63% |
Black Lives Matter | 💰 donate | 🎓 learn | ✍🏾 sign
📝 docs | :octocat: repo | 🙋🏾 issues | 🏅 swag | 🏪 marketplace