DeepV2D
DeepV2D copied to clipboard
tensorflow-gpu version
FYR: Tested ok under tensorflow-gpu==1.14.0
Errors using tensorflow-gpu==1.12.0
module 'tensorflow' has no attribute 'custom_gradient'
Errors using tensorflow-gpu==1.13.1
failed to run optimizer arithmeticoptimizer, stage removestackstridedslicesameaxis node
Testing command
python demos/demo_slam.py --dataset=scannet --n_keyframes=3
Here's my conda enviroments.yml
name: py37-deepv2d
channels:
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _tflow_select=2.1.0=gpu
- absl-py=0.7.1=py37_0
- astor=0.7.1=py37_0
- blas=1.0=mkl
- c-ares=1.15.0=h7b6447c_1
- ca-certificates=2019.5.15=0
- certifi=2019.3.9=py37_0
- cudatoolkit=10.0.130=0
- cudnn=7.6.0=cuda10.0_0
- cupti=10.0.130=0
- gast=0.2.2=py37_0
- grpcio=1.16.1=py37hf8bcb03_1
- h5py=2.9.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- intel-openmp=2019.4=243
- keras-applications=1.0.8=py_0
- keras-preprocessing=1.1.0=py_1
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libprotobuf=3.8.0=hd408876_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- markdown=3.1.1=py37_0
- mkl=2019.4=243
- mkl_fft=1.0.12=py37ha843d7b_0
- mkl_random=1.0.2=py37hd81dba3_0
- mock=3.0.5=py37_0
- ncurses=6.1=he6710b0_1
- numpy=1.16.4=py37h7e9f1db_0
- numpy-base=1.16.4=py37hde5b4d6_0
- openssl=1.1.1c=h7b6447c_1
- pip=19.1.1=py37_0
- protobuf=3.8.0=py37he6710b0_0
- python=3.7.3=h0371630_0
- readline=7.0=h7b6447c_5
- scipy=1.2.1=py37h7c811a0_0
- setuptools=41.0.1=py37_0
- six=1.12.0=py37_0
- sqlite=3.28.0=h7b6447c_0
- tensorboard=1.13.1=py37hf484d3e_0
- tensorflow=1.13.1=gpu_py37hc158e3b_0
- tensorflow-base=1.13.1=gpu_py37h8d69cac_0
- tensorflow-estimator=1.13.0=py_0
- tensorflow-gpu=1.13.1=h0d30ee6_0
- termcolor=1.1.0=py37_1
- tk=8.6.8=hbc83047_0
- werkzeug=0.15.4=py_0
- wheel=0.33.4=py37_0
- xz=5.2.4=h14c3975_4
- zlib=1.2.11=h7b6447c_3
- pip:
- attrs==19.1.0
- backcall==0.1.0
- bleach==3.1.0
- cycler==0.10.0
- decorator==4.4.0
- defusedxml==0.6.0
- easydict==1.9
- entrypoints==0.3
- google-pasta==0.1.8
- ipykernel==5.1.1
- ipython==7.5.0
- ipython-genutils==0.2.0
- jedi==0.13.3
- jinja2==2.10.1
- jsonschema==3.0.1
- jupyter-client==5.2.4
- jupyter-core==4.4.0
- jupyterlab==0.35.6
- jupyterlab-server==0.2.0
- kiwisolver==1.1.0
- markupsafe==1.1.1
- matplotlib==3.1.0
- mistune==0.8.4
- nbconvert==5.5.0
- nbformat==4.4.0
- notebook==5.7.8
- opencv-python==3.4.5.20
- pandas==0.24.2
- pandocfilters==1.4.2
- parso==0.4.0
- pexpect==4.7.0
- pickleshare==0.7.5
- prometheus-client==0.7.0
- prompt-toolkit==2.0.9
- ptyprocess==0.6.0
- pygments==2.4.2
- pyparsing==2.4.0
- pyrsistent==0.15.2
- python-dateutil==2.8.0
- pytz==2019.1
- pyyaml==5.3
- pyzmq==18.0.1
- seaborn==0.9.0
- send2trash==1.5.0
- terminado==0.8.2
- testpath==0.4.2
- toposort==1.5
- tornado==6.0.2
- tqdm==4.43.0
- traitlets==4.3.2
- vtk==8.1.2
- wcwidth==0.1.7
- webencodings==0.5.1
- wrapt==1.12.0
prefix: /home/yoyee/miniconda3/envs/py37-deepv2d
Tensorflow 1.12.0 should have custom_gradient. What happens when you run these commands?
>>> import tensorflow as tf
>>> tf.__version__
'1.12.0'
>>> tf.custom_gradient
<function custom_gradient at 0x7f6ce8e7ff28>