PFLD-pytorch
PFLD-pytorch copied to clipboard
PFLD pytorch Implementation
How to use SetPreparation.py to test on 300w dataset?
作者你好,感谢你做的工作!目前,我想试着训练一下自制的数据集,请问该如何操作呢?
按着论文中的主干网络训练还差好多,基本差1.5个百分点
Hello, I trained PFLD according to your code. The loss on the validation dataset is unchanged after about 200 epochs, and finally nme is 0.074. Why is this? Looking forward...
作者您好,谢谢您的工作,我这里有基于300w数据集的PFLD论文复现的问题: 1.300W数据集无六个姿态属性,这里就无法对齐使用这个数据训练,原论文未提到 2.严格按照论文说300w数据增强方法,人脸旋转角度-30°至30°每间隔5°旋转一次,并翻转,随机遮挡百分之20人脸区域(具体如何遮挡没说,我采用的是马赛克和灰色随机遮挡(根据RandomErasing论文)),但是发现训练损失正常下降而验证损失完全不降反而会升高 3.使用与不使用辅助网络(按照准备数据时就计算姿态角度作为标签),基本没有影响 请问关于这些问题有实验过吗,期待您的回复
注意到训练时验证集用的是test_data
The paper says that PFLD 1X and PFLD 0.25X has 12.5 Mb and 2.1 Mb, respectively. As far as I confirmed with `thop.profile` and `torchsummary.summary`, the number of parameters of...
 In each row the first tensor is pred and the second tensor is gt. Why are the Euler angles so different? Thanks!
``` def train(train_loader, pfld_backbone, auxiliarynet, criterion, optimizer, epoch): losses = AverageMeter() weighted_loss, loss = None, None for img, landmark_gt, attribute_gt, euler_angle_gt in train_loader: img = img.to(device) attribute_gt = attribute_gt.to(device) landmark_gt...