multidiffusion-upscaler-for-automatic1111
multidiffusion-upscaler-for-automatic1111 copied to clipboard
[feqture request] add compatibility to Dynamic Thresholding (CFG Scale Fix)
Thank you for the extension. It would be great if this extension could be used with Dynamic Thresholding (CFG Scale Fix). Currently it doesn't seem to work together. I got the following error messages when using both extensions together:
MultiDiffusion hooked into 'Euler a' sampler, Tile size: 96x96, Tile batches: 4, Batch size: 8. (ext: ContrlNet)
[Tiled VAE]: input_size: torch.Size([1, 3, 2048, 3648]), tile_size: 3072, padding: 32
[Tiled VAE]: split to 1x2 = 2 tiles. Optimal tile size 1792x1984, original tile size 3072x3072
[Tiled VAE]: Executing Encoder Task Queue: 100%|███████| 182/182 [00:06<00:00, 29.35it/s]
[Tiled VAE]: Done in 7.372s, max VRAM alloc 16676.609 MB 166/182 [00:06<00:00, 43.32it/s]
11:02:13-947530 ERROR Running script process batch:
D:\theera\aiart\automatic\extensions-builtin\sd-dynamic-threshold
ing\scripts\dynamic_thresholding.py: AttributeError
╭────────────────────────── Traceback (most recent call last) ───────────────────────────╮
│ D:\theera\aiart\automatic\modules\scripts.py:413 in process_batch │
│ │
│ 412 │ │ │ │ args = p.per_script_args.get(script.title(), p.script_args[scrip │
│ ❱ 413 │ │ │ │ script.process_batch(p, *args, **kwargs) │
│ 414 │ │ │ │ s.append(f'{script.title()}:{round(time.time()-t0, 2)}s') │
│ │
│ D:\theera\aiart\automatic\extensions-builtin\sd-dynamic-thresholding\scripts\dynamic_t │
│ hresholding.py:127 in process_batch │
│ │
│ 126 │ │ if p.sampler is not None: │
│ ❱ 127 │ │ │ p.sampler = sd_samplers.create_sampler(fixed_sampler_name, p.sd_mode │
│ 128 │
│ │
│ D:\theera\aiart\automatic\extensions-builtin\multidiffusion-upscaler-for-automatic1111 │
│ \scripts\tilediffusion.py:373 in <lambda> │
│ │
│ 372 │ │ sd_samplers.create_sampler_original_md = sd_samplers.create_sampler │
│ ❱ 373 │ │ sd_samplers.create_sampler = lambda name, model: self.create_sampler_hij │
│ 374 │ │ │ name, model, p, Method(method), │
│ │
│ D:\theera\aiart\automatic\extensions-builtin\multidiffusion-upscaler-for-automatic1111 │
│ \scripts\tilediffusion.py:445 in create_sampler_hijack │
│ │
│ 444 │ │ # create a sampler with the original function │
│ ❱ 445 │ │ sampler = sd_samplers.create_sampler_original_md(name, model) │
│ 446 │ │ if method == Method.MULTI_DIFF: delegate_cls = MultiDiffusion │
╰────────────────────────────────────────────────────────────────────────────────────────╯
AttributeError: module 'modules.sd_samplers' has no attribute 'create_sampler_original_md'
100%|██████████████████████████████████████████████████████| 2/2 [00:05<00:00, 2.85s/it]
[Tiled VAE]: input_size: torch.Size([1, 4, 256, 456]), tile_size: 192, padding: 1185s/it]
[Tiled VAE]: split to 2x3 = 6 tiles. Optimal tile size 160x128, original tile size 192x192
[Tiled VAE]: Executing Decoder Task Queue: 100%|███████| 738/738 [00:13<00:00, 53.13it/s]
[Tiled VAE]: Done in 15.064s, max VRAM alloc 12484.830 MB733/738 [00:13<00:00, 45.90it/s]
MultiDiffusion Sampling: 19%|█████▎ | 3/16 [00:29<02:08, 9.86s/it]
it was working fine until I updated it a few days ago weirdly enough, with this same error after multidiffusion tries hooking after the 50% mark.
bump
+1