dtt
dtt copied to clipboard
experiments with Martin-Löf type theory ⋃ erasure ⋃ Rust
dtt experiments
Experimenting with Dependent Type Theory in Rust. The goal here is to attempt to lower MLT Terms to an SSA IR.
The core is extremely simple and as such a number of things need to be encoded.
Σ : Π A : U (A → U) → U′
Σ = λA : U . λB : A → U . Π C : U (Π x : A B(x) → C) → C
sigma = \A : U
Here are some examples:
N : Type 0
Z : N
S : forall _ : N -> N
three = \f : (forall _ : N -> N) => \x : N => (f (f (f x)))
check (three S)
check (three (three S))
eval ((three (three S)) Z)
running this code will produce:
(three S) : N -> N
(three (three S)) : N -> N
((three (three S)) Z)
= (S (S (S (S (S (S (S (S (S Z)))))))))
: N
Irrelevance
Thought: If irrelevant terms are erased, we can extract functions that don't need dependent types for computation but still benefit from type checking.
Vec T .n
val Vec : Π(x : Type 0) -> (.Π(l: C) -> Type 0)
val append : Vec T .n -> Vec T .m -> Vec T .(n + m)
append: Π(T: Type0) -> (
.Π(n: Nat) -> (
.Π(m: Nat) -> (
Π(_:Vec T .n) -> (
Π(_:Vec T .m) -> (
Vec T .(+ n m)
)
)
)
)
)
val erased_Vec : Π(x : Type 0) -> Type 0
val erased_append : Vec T -> Vec T -> Vec T
erased_append : Π(T: Type0) -> (
Π(_:Vec T) -> (
Π(_:Vec T) -> (
Vec T
)
)
)
Erasing Π Types
Π(x : Type 0) -> (.Π(l: C) -> Type 0)
Π(x : Type 0) -> Type 0
.Π(x:X) -> T ==> .T, erroring if .T depends on x
Erasing λ Expressions
.λ(x:X) => E ==> .E, erroring if .E depends on x
Erasing Applications
((Vec T) .n)
(Vec T)
.(a b) ==> .a, erroring if .a requires a parameter