zsd_dataset
zsd_dataset copied to clipboard
Zero Shot Detection Dataset
Zero Shot Detection Dataset
This repository contains the datasets used in Zero Shot Detection by Pengkai Zhu, Hanxiao Wang, Tolga Bolukbasi and Venkatesh Saligrama.
@article{Zhu_2019,
title={Zero Shot Detection},
DOI={10.1109/tcsvt.2019.2899569},
journal={IEEE Transactions on Circuits and Systems for Video Technology},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Zhu, Pengkai and Wang, Hanxiao and Saligrama, Venkatesh},
year={2019}
}
Seen/Unseen Split
The scripts can download Pascal VOC or MSCOCO and split it into four parts as in the paper:
- Train: seen in train
- Test-Seen: seen in val/test
- Test-Unseen: unseen in train&val&test
- Test-Mix: both seen & unseen in val/test
The dataset is split based on assigned seen categories names. We provide
the splits we used in the paper in seen_names
subfolder.
Attributes
The attributes for Pascal VOC will be downloaded and extracted automatically
when running get_voc_zsd_dataset.sh
. We also provide the attributes we use
in the paper in the attributes
subfolder:
-
coco_w2v.txt
: w2v attributes for coco categories -
coco_w2v_voc.txt
: projected w2v attributes for coco categories (mirroring VOC attributes similarity) -
voc.txt
: labelled attributes (from aP&Y) for VOC categories -
voc_w2v.txt
: w2v attributes for VOC categories
How to use
- Preliminary:
numpy
Setup Pascal VOC:
bash get_voc_zsd_dataset.sh $zsd-data-dir # $zsd-data-dir: directory for saving pascal ZSD dataset
The dataset will be downloaded to $zsd-data-dir
and the split sets will be saved
in 1010split
subfolder by default. If you already downloaded the dataset or would like
to try some other splits, just run:
python zsd_split.py --dataset voc --data_dir $zsd-data-dir --name_file voc.names \
--seen_name_file seen_names/voc/${choose another split} \
--save_dir ${split save name} \
Setup MSCOCO
bash get_coco_zsd_dataset.sh $zsd-data-dir # $zsd-data-dir: directory for saving coco ZSD dataset