neural-semantic-encoders
neural-semantic-encoders copied to clipboard
fail to run test
Errors come out :
nse_output = nse_encoder(nse_embed_input1)
TypeError Traceback (most recent call last)
<ipython-input-8-bc8144b2d901> in <module>()
----> 1 nse_output = nse_encoder(nse_embed_input1) # (None, 11, 50)
2
3
/usr/local/lib/python2.7/dist-packages/Keras-1.1.2-py2.7.egg/keras/engine/topology.pyc in __call__(self, x, mask)
515 if inbound_layers:
516 # This will call layer.build() if necessary.
--> 517 self.add_inbound_node(inbound_layers, node_indices, tensor_indices)
518 # Outputs were already computed when calling self.add_inbound_node.
519 outputs = self.inbound_nodes[-1].output_tensors
/usr/local/lib/python2.7/dist-packages/Keras-1.1.2-py2.7.egg/keras/engine/topology.pyc in add_inbound_node(self, inbound_layers, node_indices, tensor_indices)
569 # creating the node automatically updates self.inbound_nodes
570 # as well as outbound_nodes on inbound layers.
--> 571 Node.create_node(self, inbound_layers, node_indices, tensor_indices)
572
573 def get_output_shape_for(self, input_shape):
/usr/local/lib/python2.7/dist-packages/Keras-1.1.2-py2.7.egg/keras/engine/topology.pyc in create_node(cls, outbound_layer, inbound_layers, node_indices, tensor_indices)
153
154 if len(input_tensors) == 1:
--> 155 output_tensors = to_list(outbound_layer.call(input_tensors[0], mask=input_masks[0]))
156 output_masks = to_list(outbound_layer.compute_mask(input_tensors[0], input_masks[0]))
157 # TODO: try to auto-infer shape if exception is raised by get_output_shape_for.
/data/development/development_doc_vector_snli/data/nse.pyc in call(self, x, mask)
205 expanded_last_output = K.expand_dims(last_output, dim=1) # (batch_size, 1, output_dim)
206 # (batch_size, 1+input_length, output_dim)
--> 207 return K.concatenate([expanded_last_output, last_memory], axis=1)
208
209 def get_config(self):
/usr/local/lib/python2.7/dist-packages/Keras-1.1.2-py2.7.egg/keras/backend/theano_backend.pyc in concatenate(tensors, axis)
474 raise Exception('Invalid concat axis for sparse matrix: ' + axis)
475 else:
--> 476 return T.concatenate([to_dense(x) for x in tensors], axis=axis)
477
478
/usr/local/lib/python2.7/dist-packages/Theano-0.9.0.dev2-py2.7.egg/theano/tensor/basic.pyc in concatenate(tensor_list, axis)
4292 "or a list, make sure you did not forget () or [] around "
4293 "arguments of concatenate.", tensor_list)
-> 4294 return join(axis, *tensor_list)
4295
4296
/usr/local/lib/python2.7/dist-packages/Theano-0.9.0.dev2-py2.7.egg/theano/gof/op.pyc in __call__(self, *inputs, **kwargs)
600 """
601 return_list = kwargs.pop('return_list', False)
--> 602 node = self.make_node(*inputs, **kwargs)
603
604 if config.compute_test_value != 'off':
/usr/local/lib/python2.7/dist-packages/Theano-0.9.0.dev2-py2.7.egg/theano/tensor/basic.pyc in make_node(self, *axis_and_tensors)
3812
3813 return self._make_node_internal(
-> 3814 axis, tensors, as_tensor_variable_args, output_maker)
3815
3816 def _make_node_internal(self, axis, tensors,
/usr/local/lib/python2.7/dist-packages/Theano-0.9.0.dev2-py2.7.egg/theano/tensor/basic.pyc in _make_node_internal(self, axis, tensors, as_tensor_variable_args, output_maker)
3878 if not python_all([x.ndim == len(bcastable)
3879 for x in as_tensor_variable_args[1:]]):
-> 3880 raise TypeError("Join() can only join tensors with the same "
3881 "number of dimensions.")
3882
TypeError: Join() can only join tensors with the same number of dimensions.