hpg icon indicating copy to clipboard operation
hpg copied to clipboard

Hindsight policy gradients

Hindsight policy gradients

This software supplements the paper "Hindsight policy gradients".

The implementation focuses on clarity and flexibility rather than computational efficiency.

Examples

Training an agent in a bit flipping environment (k = 8) using a weighted per-decision hindsight policy gradient estimator (HPG):

python3 hpg/scripts/run.py hpg/examples/flipbit8/flipbit8_bs2_hpg

Training an agent in a bit flipping environment (k = 8) using a goal-conditional policy gradient estimator (GCPG):

python3 hpg/scripts/run.py hpg/examples/flipbit8/flipbit8_bs2_gcpg

Combining the corresponding results into a single plot (see folder "results/flipbit8_bs2"):

mkdir -p results/flipbit8_bs2
cp -r hpg/examples/flipbit8/flipbit8_bs2_hpg hpg/examples/flipbit8/flipbit8_bs2_gcpg results/flipbit8_bs2
python3 hpg/scripts/analysis.py results/flipbit8_bs2

Dependencies

  • matplotlib (2.1.1)
  • numpy (1.17.2)
  • pandas (0.23.4)
  • scipy (1.3.0)
  • seaborn (0.9.0)
  • tensorflow (1.12.0)
  • gym (0.13.1)
  • atari-py (?, https://github.com/openai/atari-py)
  • mujoco-py (2.0.2.6, https://github.com/openai/mujoco-py)
  • ray (0.7.2)