pandas
pandas copied to clipboard
BUG: `margins` value incorrect with `count` aggfunc and no index
Pandas version checks
-
[X] I have checked that this issue has not already been reported.
-
[X] I have confirmed this bug exists on the latest version of pandas.
-
[X] I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
df = pd.DataFrame({'x': [1, 1, 2], 'y': [3, 3, 4], 'z': [5, 5, 6], 'w': [7, 8, 9]})
print(df.pivot_table(columns=["y", "z"], values="w", margins=True, aggfunc="count"))
# y 3 4
# z 5 All 6 All
# w 2 1 1 1
print(df.pivot_table(index="x", columns=["y", "z"], values="w", margins=True, aggfunc="count"))
# y 3 4 All
# z 5 6
# x
# 1 2.0 NaN 2
# 2 NaN 1.0 1
# All 2.0 1.0 3
Issue Description
The all column should be a subaggregation over the aggregations, but seems to perhaps be calling count on the result rather than aggregating the counts? E.g., the first result should look like this:
# y 3 4
# z 5 All 6 All
# w 2 2 1 1
Expected Behavior
Values should be aggregations computed over the original data pivoting only on the first pivot column.
Installed Versions
INSTALLED VERSIONS
commit : d9cdd2ee5a58015ef6f4d15c7226110c9aab8140 python : 3.11.5.final.0 python-bits : 64 OS : Darwin OS-release : 23.4.0 Version : Darwin Kernel Version 23.4.0: Fri Mar 15 00:12:49 PDT 2024; root:xnu-10063.101.17~1/RELEASE_ARM64_T6020 machine : arm64 processor : arm byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8
pandas : 2.2.2 numpy : 1.26.4 pytz : 2024.1 dateutil : 2.9.0.post0 setuptools : 68.0.0 pip : 23.2.1 Cython : None pytest : None hypothesis : None sphinx : None blosc : None feather : None xlsxwriter : None lxml.etree : None html5lib : None pymysql : None psycopg2 : None jinja2 : None IPython : 8.22.2 pandas_datareader : None adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : None bottleneck : None dataframe-api-compat : None fastparquet : None fsspec : None gcsfs : None matplotlib : None numba : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None pyarrow : None pyreadstat : None python-calamine : None pyxlsb : None s3fs : None scipy : None sqlalchemy : None tables : None tabulate : None xarray : None xlrd : None zstandard : 0.19.0 tzdata : 2024.1 qtpy : None pyqt5 : None
The all column should be a subaggregation over the aggregations, but seems to perhaps be calling count on the result rather than aggregating the counts?
It appears to me the current behavior is how it's documented.
https://pandas.pydata.org/docs/reference/api/pandas.pivot_table.html
If margins=True, special All columns and rows will be added with partial group aggregates across the categories on the rows and columns.
If margin=True, aggfunc will be used to calculate the partial aggregates.
You seem to think pandas should always use sum instead of the provided aggfunc. Is there anything in the documentation that makes you think that should be the behavior?
Pandas version checks
- [x] I have checked that this issue has not already been reported.
- [x] I have confirmed this bug exists on the latest version of pandas.
- [x] I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
In [1]: import pandas as pd ...: import numpy as np ...: def df_data(): ...: return { ...: "A": [ ...: "foo", ...: "foo", ...: "foo", ...: "foo", ...: "bar", ...: "bar", ...: "bar", ...: "bar", ...: "foo", ...: "foo", ...: "foo", ...: ], ...: "B": [ ...: "on.e", ...: "on.e", ...: "on.e", ...: 'tw"o', ...: "on.e", ...: "on.e", ...: "on.e", ...: 'tw"o', ...: 'tw"o', ...: 'tw"o', ...: "on.e", ...: ], ...: "C": [ ...: "dull", ...: "dull", ...: "shi'ny", ...: "dull", ...: "dull", ...: "shi'ny", ...: "shi'ny", ...: "dull", ...: "shi'ny", ...: "shi'ny", ...: "shi'ny", ...: ], ...: "D": np.arange(0, 11), ...: "E": np.arange(1, 12), ...: "F": np.arange(2, 13), ...: } ...: df = pd.DataFrame(df_data()) ...: pivot_kwargs = { ...: "columns": ["B", "C"], ...: "values": ["D", "E"], ...: "aggfunc": "count", ...: "dropna": True, ...: "margins": True, ...: } ...: df.pivot_table(**pivot_kwargs) Out[1]: B on.e tw"o C dull shi'ny All dull shi'ny All D 3 4 2 2 2 2 E 3 4 2 2 2 2Issue Description
The all column should be a subaggregation over the aggregations, but seems to perhaps be calling
counton the result rather than aggregating the counts? e.g. if aggfunc is prod instead, I get the following:B on.e tw"o C dull shi'ny All dull shi'ny All D 0 600 0 21 72 1512 E 10 1386 13860 32 90 2880Expected Behavior
Values should be 7 and 4 respectively.
Installed Versions
@rhshadrach to clarify my question was more on whether the inputs to the aggfunc in the margin were the original values, or the aggregated values. For context, take the following dataframe:
A B C D E F
0 foo baz dull 0 0.0 None
1 foo baz dull 1 1.0 None
2 foo baz shiny 2 2.0 None
3 foo baz dull 3 3.0 None
4 bar baz dull 4 NaN None
5 bar baz shiny 5 5.0 None
6 bar baz shiny 6 6.0 None
7 bar baz dull 7 7.0 None
8 foo baz dull 8 8.0 None
9 foo baz shiny 9 NaN None
10 foo buz shiny 10 10.0 None
11 foo buz shiny 11 NaN None
12 foo baz spot 12 NaN None
13 bar baz spot 13 NaN None
if we call pivot_table with the following kwargs:
In [26]: pivot_kwargs
Out[26]:
{'index': None,
'columns': ['B', 'C'],
'values': 'D',
'dropna': False,
'fill_value': None,
'margins': True}
In [27]: df.pivot_table(**pivot_kwargs)
Out[27]:
B baz buz
C dull shiny spot All dull shiny spot All
D 3.833333 5.5 12.5 7.277778 NaN 10.5 NaN 10.5
We get 7.28 for the margins value of baz. If I modify the pivot kwargs like so:
In [28]: pivot_kwargs['columns'] = 'B'
In [29]: df.pivot_table(**pivot_kwargs)
Out[29]:
B baz All buz All
D 5.833333 5.833333 10.5 10.5
We get 5.83 for the aggregate value of baz. My confusion is as follows: is margins supposed to be the result of the aggfunc applied over all values (grouped by baz (as would be the case with sum)), or is it supposed to be the aggfunc applied over the aggregations from the first pivot? I ask because when index is present, the behavior seems to be different:
In [40]: pivot_kwargs
Out[40]:
{'index': 'A',
'columns': ['B', 'C'],
'values': 'D',
'dropna': False,
'fill_value': None,
'margins': True}
In [41]: df.to_pandas().pivot_table(**pivot_kwargs)
Out[41]:
B baz buz All
C dull shiny spot dull shiny spot
A
bar 5.500000 5.5 13.0 NaN NaN NaN 7.000000
foo 3.000000 5.5 12.0 NaN 10.5 NaN 6.222222
All 3.833333 5.5 12.5 NaN 10.5 NaN 6.500000
if we follow the aggregation over aggregation rule from above, the margin for baz dull should be (5.5 + 3)/2 = 4.25, but is instead 3.83.
Thanks - agree there is an inconsistency here. Am I correct in saying that the OP example does not demonstrate the issue? it would be helpful to post reproducible and minimal examples. Can you update the OP? I'd recommend something like this:
df = pd.DataFrame({'x': [1, 1, 2], 'y': [3, 3, 4], 'z': [5, 5, 6], 'w': [7, 8, 9]})
print(df.pivot_table(columns=["y", "z"], values="w", margins=True, aggfunc="count"))
# y 3 4
# z 5 All 6 All
# w 2 1 1 1
print(df.pivot_table(index="x", columns=["y", "z"], values="w", margins=True, aggfunc="count"))
# y 3 4 All
# z 5 6
# x
# 1 2.0 NaN 2
# 2 NaN 1.0 1
# All 2.0 1.0 3
It appears to me that the index="x" method is implemented correct - it uses the original data when computing the margins, whereas leaving index unspecified gives the incorrect result. The example above should be:
# y 3 4
# z 5 All 6 All
# w 2 2 1 1
Thank you @rhshadrach for confirming - I'll go ahead and update the OP with the example you suggest!
take