pandas
pandas copied to clipboard
BUG: Renaming a dataframe columns with a series containing duplicated index corrupts the dataframe
Pandas version checks
-
[X] I have checked that this issue has not already been reported.
-
[X] I have confirmed this bug exists on the latest version of pandas.
-
[ ] I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
# Define a DataFrame
df = pd.DataFrame({
'A': [1, 2, 3],
'B': [4, 5, 6],
'C': [7, 8, 9]
})
# Create a Series for renaming columns, with a non-unique index
rename_series = pd.Series(['X', 'Y', 'Z', 'W'], index=['A', 'B', 'B', 'C'])
# Rename columns using the filtered Series
df.rename(columns=rename_series, inplace=True)
print(df) #TypeError: unhashable type: 'Series'
print(df['X'])#TypeError: cannot convert the series to <class 'int'>
The following extended example shows that dataframe can appear uncorrupted if display is not reaching the problematic column names:
import pandas as pd
import numpy as np
# Define a DataFrame of size 180x200
data = np.random.randint(1, 100, size=(20, 60))
columns = [f'Col_{i}' for i in range(60)]
df = pd.DataFrame(data, columns=columns)
# Create a Series for renaming columns, ensuring all names are unique except for two in the middle
new_names = [f'New_{i}' for i in range(61)]
old_names = [f'Col_{i}' for i in range(30)] + ['Col_29'] + [f'Col_{i}' for i in range(30, 60)]
rename_series = pd.Series(new_names, index=old_names)
# Apply renaming to the DataFrame
df.rename(columns=rename_series, inplace=True)
df #works
df['New_0'] #TypeError: cannot convert the series to <class 'int'>
Issue Description
When renaming dataframe columns with a Series containing duplicates indexing no error is thrown but dataframe is corrupted.
Expected Behavior
It should either produce a valid dataframe like using insteadSeries.to_dict()
would, or throw an error during conversion.
Installed Versions
INSTALLED VERSIONS
commit : d9cdd2ee5a58015ef6f4d15c7226110c9aab8140 python : 3.12.3.final.0 python-bits : 64 OS : Darwin OS-release : 23.4.0 Version : Darwin Kernel Version 23.4.0: Fri Mar 15 00:12:41 PDT 2024; root:xnu-10063.101.17~1/RELEASE_ARM64_T8103 machine : arm64 processor : arm byteorder : little LC_ALL : None LANG : None LOCALE : None.UTF-8
pandas : 2.2.2 numpy : 1.26.4 pytz : 2024.1 dateutil : 2.9.0.post0 setuptools : None pip : 24.0 Cython : None pytest : None hypothesis : None sphinx : None blosc : None feather : None xlsxwriter : None lxml.etree : None html5lib : None pymysql : 1.4.6 psycopg2 : 2.9.9 jinja2 : None IPython : 8.23.0 pandas_datareader : None adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : None bottleneck : None dataframe-api-compat : None fastparquet : None fsspec : None gcsfs : None matplotlib : None numba : None numexpr : None odfpy : None openpyxl : 3.1.2 pandas_gbq : None pyarrow : None pyreadstat : None python-calamine : None pyxlsb : None s3fs : None scipy : None sqlalchemy : 2.0.29 tables : None tabulate : None xarray : None xlrd : None zstandard : None tzdata : 2024.1 qtpy : None pyqt5 : None
Hi @mixmixmix, I was able to reproduce what you provided. However, from my personal view, why not just use a dict
instead of a Series
? As stated in the documentation example, a dict
might be more preferable.
import pandas as pd
import numpy as np
# Define a DataFrame
df = pd.DataFrame({
'A': [1, 2, 3],
'B': [4, 5, 6],
'C': [7, 8, 9]
})
df.rename(columns={'A': 'X', 'B': 'Y', 'C': 'W'}, inplace=True, errors="raise")
# X Y W
# 0 1 4 7
# 1 2 5 8
# 2 3 6 9
# Define a DataFrame of size 20x60
data = np.random.randint(1, 100, size=(20, 60))
columns = [f'Col_{i}' for i in range(60)]
df = pd.DataFrame(data, columns=columns)
# Create a Series for renaming columns, ensuring all names are unique except for two in the middle
new_names = [f'New_{i}' for i in range(61)]
old_names = [f'Col_{i}' for i in range(30)] + ['Col_29'] + [f'Col_{i}' for i in range(30, 60)]
df.rename(columns={old_names[i]: new_names[i] for i in range(61)}, inplace=True, errors="raise")
df['New_0'] # works
Hi @mixmixmix, I was able to reproduce what you provided. However, from my personal view, why not just use a
dict
instead of aSeries
? As stated in the documentation example, adict
might be more preferable.
Thanks @luke396 , and: yes absolutely using dicts makes more sense!. However, still if the option of using Series is possible, I think it should return an error if it cannot create a valid columns for the dataframe.
@luke396 I can look into this. If you want
@luke396 I can look into this. If you want
Of course, anyone can contribute to pandas. Replying 'take' will assign the issue to you.