pandas
pandas copied to clipboard
BUG: the `seconds` attribute of `.dt.components` for pyarrow timestamp datatype seem faulty
Pandas version checks
-
[X] I have checked that this issue has not already been reported.
-
[X] I have confirmed this bug exists on the latest version of pandas.
-
[X] I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
assert pd.__version__ == '2.2.0'
# example from the book "Effective Pandas 2 (by Matt Harrison)"
classes = ['cs106', 'cs150', 'hist205', 'hist206', 'hist207']
start_dates = (
pd.Series([
'2015-03-08',
'2015-03-08',
'2015-03-09',
'2015-03-09',
'2015-03-11'
], dtype='datetime64[ns]', index=classes
).astype('timestamp[ns][pyarrow]'))
end_dates = (
pd.Series([
'2015-05-28 23:59:59',
'2015-06-01 3:00:00',
'2015-06-03',
'2015-06-02 14:20',
'2015-06-01'
], dtype='datetime64[ns]', index=classes
).astype('timestamp[ns][pyarrow]'))
duration = (end_dates - start_dates)
Issue Description
These are the data:
print(duration)
cs106 81 days 23:59:59
cs150 85 days 03:00:00
hist205 86 days 00:00:00
hist206 85 days 14:20:00
hist207 82 days 00:00:00
dtype: duration[ns][pyarrow]
I noticed that calling .dt.components
on the above duration object behaves differently for the 'timestamp[ns][pyarrow]'
vs. the 'timedelta64[ns]'
data types. For the former, the seconds
attribute (column) give a very high value (and I assume it is total seconds for the 'HH:MM:SS' part.
print(duration.dt.components)
results in:
days hours minutes seconds milliseconds microseconds nanoseconds
0 81 23 59 86399 0 0 0
1 85 3 0 10800 0 0 0
2 86 0 0 0 0 0 0
3 85 14 20 51600 0 0 0
4 82 0 0 0 0 0 0
Expected Behavior
Converting to pandas 1.x 'timedelta64[ns]'
give an expected result:
print(duration.astype('timedelta64[ns]').dt.components)
results in:
days hours minutes seconds milliseconds microseconds nanoseconds
cs106 81 23 59 59 0 0 0
cs150 85 3 0 0 0 0 0
hist205 86 0 0 0 0 0 0
hist206 85 14 20 0 0 0 0
hist207 82 0 0 0 0 0 0
Installed Versions
INSTALLED VERSIONS
commit : f538741432edf55c6b9fb5d0d496d2dd1d7c2457 python : 3.12.1.final.0 python-bits : 64 OS : Darwin OS-release : 21.6.0 Version : Darwin Kernel Version 21.6.0: Sun Nov 6 23:31:13 PST 2022; root:xnu-8020.240.14~1/RELEASE_ARM64_T6000 machine : arm64 processor : arm byteorder : little LC_ALL : None LANG : de_DE.UTF-8 LOCALE : de_DE.UTF-8
pandas : 2.2.0 numpy : 1.26.4 pytz : 2024.1 dateutil : 2.8.2 setuptools : 69.0.3 pip : 24.0 Cython : None pytest : None hypothesis : None sphinx : None blosc : None feather : None xlsxwriter : None lxml.etree : None html5lib : None pymysql : None psycopg2 : None jinja2 : None IPython : 8.21.0 pandas_datareader : None adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : None bottleneck : None dataframe-api-compat : None fastparquet : None fsspec : None gcsfs : None matplotlib : None numba : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None pyarrow : 15.0.0 pyreadstat : None python-calamine : None pyxlsb : None s3fs : None scipy : None sqlalchemy : None tables : None tabulate : None xarray : None xlrd : None zstandard : None tzdata : 2023.4 qtpy : None pyqt5 : None
Thanks for the report. Confirmed on main, further investigations and PRs to fix are welcome!
Will try to work on this.
take